Description

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有 \(n\) 次点击要做,成功了就是o,失败了就是x,分数是按combo计算的,连续 \(a\) 个combo就有 \(a\times a\) 分,combo就是极大的连续o

比如ooxxxxooooxxx,分数就是 \(2 \times 2 + 4 \times 4 = 4 +16=20\)。

Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。

比如oo?xx就是一个可能的输入。 那么WJMZBMR这场osu的期望得分是多少呢?

比如oo?xx的话,?o的话就是oooxx => 9,是x的话就是ooxxx => 4

期望自然就是 (4+9)/2=6.5(4+9)/2 =6.5(4+9)/2=6.5 了

Input

第一行一个整数 n ,表示点击的个数

接下来一个字符串,每个字符都是o,x,?中的一个

Output

一行一个浮点数表示答案

四舍五入到小数点后 4 位

如果害怕精度跪建议用long double或者extended

Hint

\(N\leq 300000\)

Solution

显然期望 \(dp\) 的套路。定义两个数组 \(f[i],g[i]\) 分别表示到 \(i\) 的总得分和以 \(i\) 为结尾的 \(combo\) 长度。

如果当前是o 根据 \((x+1)^2=x^2+2x+1\),\(f[i]=f[i-1]+2*g[i-1]+1\),同时 \(g[i]=g[i-1]+1\)

如果当前是x \(f[i]=f[i-1],g[i]=0\)

如果当前是? 因为各有 \(0.5\) 的可能性,所以 \(f[i]=0.5*(f[i-1]+2*g[i-1]+1)+0.5*f[i-1],g[i]=0.5*(g[i-1]+1)+0.5*0\)

Code

#include<cstdio>
#define N 300005
#define db double int n;
db f[N];
db g[N];
char ch[N]; signed main(){
scanf("%d",&n);
scanf("%s",ch+1);
for(int i=1;i<=n;i++){
if(ch[i]=='o'){
f[i]=f[i-1]+2*g[i-1]+1;
g[i]=g[i-1]+1;
} else if(ch[i]=='x'){
f[i]=f[i-1];
g[i]=0;
} else{
g[i]=(g[i-1]+1)/2.0;
f[i]=0.5*f[i-1]+0.5*(f[i-1]+2*g[i-1]+1);
}
}
printf("%.4lf\n",f[n]);
return 0;
}

[Luogu1365] WJMZBMR打osu! / Easy的更多相关文章

  1. WJMZBMR打osu! / Easy

    WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...

  2. P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 nnn 次点击要做,成功了就是o,失败了 ...

  3. 洛谷 P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有\(n\)次点击要做,成功 ...

  4. luogu P1365 WJMZBMR打osu! / Easy(期望DP)

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nnn次点击要做,成功了就是o,失败了就是 ...

  5. Luogu P1365 WJMZBMR打osu! / Easy

    概率期望专题首杀-- 毒瘤dp 首先根据数据范围推断出复杂度在O(n)左右 但不管怎么想都是n^2-- 晚上躺在床上吃东西的时候(误)想到之前有几道dp题是通过前缀和优化的 而期望的可加性又似乎为此创 ...

  6. 洛谷 1365 WJMZBMR打osu! / Easy

    题目:https://www.luogu.org/problemnew/show/P1365 大水题.记录一下o的期望长度. 关键是(x+1)^2=x^2+2*x+1. #include<ios ...

  7. [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)

    题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...

  8. 洛谷P1365 WJMZBMR打osu! / Easy——期望DP

    题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...

  9. P1365 WJMZBMR打osu! / Easy-洛谷luogu

    传送门 题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nn次点击要做,成功了就是o,失败 ...

随机推荐

  1. AX_InventDim

    static void Job1(Args _args) { ; info(InventDim::find("D00000001").preFix()); } public voi ...

  2. ABP框架系列之四十六:(Setting-Management-设置管理)

    Introduction Every application need to store some settings and use these settings in somewhere in th ...

  3. validatord的使用方法理解

    今天是周日,自己已经在公司上班一周啦,可是这是我感觉最难熬 一周之一,上一次还是在高考失利的时候,自己整整一个月没有出去,在家里呆着,不知道干什么,这一此自己也是,感觉自己很难在这个公司熬下去,但是, ...

  4. [转]Ubuntu16.04下ralink rt3290驱动安装

    出处:https://askubuntu.com/questions/253632/how-do-i-get-a-ralink-rt3290-wireless-card-working 解决为问题:L ...

  5. 桌面应用开发之WPF页面导航

    先看效果图 Get Start   为了项目解耦,使用mvvmlight框架.MVVM设计模式请自行了解. 1 新建项目   新建一个MvvmLight(WPF)项目,删除其中无关文件夹:Design ...

  6. java web中的异常处理

    1.集中处理 参考:https://blog.csdn.net/weililansehudiefei/article/details/73691294

  7. ZKWeb网页框架1.9正式发布

    1.9.0更新的内容有 更新项目工具 更好的支持Linux 添加工具函数 Exception.ToDetailedString (获取例外的详细信息) Exception.ToSummaryStrin ...

  8. Python脱产8期 Day014 2019/4/28

    一 带参装饰器 1.通常,装饰器为被装饰的函数添加新功能,需要外界的参数 # -- outer参数固定一个,就是func # -- inner参数固定同被装饰的函数,也不能添加新参数 # -- 可以借 ...

  9. phpMyAdmin 4.7.x CSRF 漏洞利用

    作者:Ambulong phpMyAdmin是个知名MySQL/MariaDB在线管理工具,phpMyAdmin团队在4.7.7版本中修复了一个危害严重的CSRF漏洞(PMASA-2017-9),攻击 ...

  10. hadoop安装hive及java调用hive

     1.安装hive 在安装hive前,请确保已经安装好了hadoop,如未安装,请参考centoos 安装hadoop集群进行安装: 1.1.下载,解压 下载hive2.1.1:http://mirr ...