Tensorflow学习练习-卷积神经网络应用于手写数字数据集训练
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("F:\TensorflowProject\MNIST_data",one_hot=True)
#每个批次大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples //batch_size
#初始化权值
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1) #初始化一个截断的正态分布
return tf.Variable(initial)
#初始化偏值
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(x,W):
#x input tensor of shape '[batch,in_height,in_width,in_channels]'
#W filter/kernel tensor of shape [filter_height,filter_width,in_channels,out_channels]
#strides[0] = strides[3] = 1, strides[1]代表x方向的步长,strides[2]代表y方向的步长
#padding:A string from :SAME 或者 VALID
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(x):
#ksize[1,x,y,1]
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784]) #28*28
y = tf.placeholder(tf.float32,[None,10])
#设置x的格式为4D向量 [batch,in_height,in_width,in_chanels]
x_image = tf.reshape(x,[-1,28,28,1])
#初始化第一个卷积层的权值和偏值
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #max-pooling,经过池化计算得到一个结果
#初始化第二个卷积层的权值和偏置值
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
#把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #max-pooling
#28*28的图片第一次卷积后还是28*28,第一次池化后为14*14
#第二次卷积后是14*14,第二次池化后为7*7
#上面步骤完成以后得到64张7*7的平面
#初始化第一个全连接层的权值
W_fc1 = weight_variable([7*7*64,1024]) #上一步有 7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024]) #1024个节点
#把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)
#keep_prob标识神经元输出概率
keep_prob =tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
#初始化第二个全连接层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
#计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)
#交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#用布尔列表存放结果
correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print("Iter "+str(epoch)+" ,Testing Accuracy = "+str(test_acc))
##############运行结果
Iter 0 ,Testing Accuracy = 0.9552
Iter 1 ,Testing Accuracy = 0.9743
Iter 2 ,Testing Accuracy = 0.9796
Iter 3 ,Testing Accuracy = 0.9807
Iter 4 ,Testing Accuracy = 0.9849
Iter 5 ,Testing Accuracy = 0.9863
Iter 6 ,Testing Accuracy = 0.9859
Iter 7 ,Testing Accuracy = 0.9885
Iter 8 ,Testing Accuracy = 0.9887
Iter 9 ,Testing Accuracy = 0.9894
Iter 10 ,Testing Accuracy = 0.9907
Iter 11 ,Testing Accuracy = 0.991
Iter 12 ,Testing Accuracy = 0.9903
Iter 13 ,Testing Accuracy = 0.992
Iter 14 ,Testing Accuracy = 0.9904
Iter 15 ,Testing Accuracy = 0.9915
Iter 16 ,Testing Accuracy = 0.9903
Iter 17 ,Testing Accuracy = 0.9912
Iter 18 ,Testing Accuracy = 0.9917
Iter 19 ,Testing Accuracy = 0.9912
Iter 20 ,Testing Accuracy = 0.992
Tensorflow学习练习-卷积神经网络应用于手写数字数据集训练的更多相关文章
- TensorFlow------单层(全连接层)实现手写数字识别训练及测试实例
TensorFlow之单层(全连接层)实现手写数字识别训练及测试实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- 【TensorFlow-windows】(四) CNN(卷积神经网络)进行手写数字识别(mnist)
主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...
- keras和tensorflow搭建DNN、CNN、RNN手写数字识别
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...
- 深度学习面试题12:LeNet(手写数字识别)
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...
- Kannada-MNIST:一个新的手写数字数据集
TLDR: 我正在传播2个数据集: Kannada-MNIST数据集:28x28灰度图像:60k 训练集 | 10k测试集 Dig-MNIST:28x28灰度图像:10240(1024x10)(见下图 ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- Tensorflow - Tutorial (7) : 利用 RNN/LSTM 进行手写数字识别
1. 经常使用类 class tf.contrib.rnn.BasicLSTMCell BasicLSTMCell 是最简单的一个LSTM类.没有实现clipping,projection layer ...
- Tensorflow手写数字识别训练(梯度下降法)
# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #p ...
随机推荐
- SEM
SEM是Search Engine Marketing的缩写,中文意思是搜索引擎营销.SEM是一种新的网络营销形式.SEM所做的就是全面而有效的利用搜索引擎来进行网络营销和推广.SEM追求最高的性价比 ...
- UVA 11988 Broken Keyboard (a.k.a. Beiju Text) (链表,模拟)
使用list来模拟就行了,如果熟悉list,那么这道题真是分分钟秒掉... list是双向循环链表,插入和删除操作非常快,缺点是不能像数组一样随机按下标读取. 一下是wiki上说明的相关函数:http ...
- C#异步编程(四)混合模式线程同步
之前讨论了基元用户模式和内核模式线程同步构造.其他所有线程同步构造都基于它们,而且一般都合并了用户模式和内核模式构造,我们称为混合线程同步构造.没有线程竞争时,混合构造提供了基元用户模式构造所具有的性 ...
- asp.net 打印控件使用方法
打印的效果及控制性虽然不是很好,但是也能勉强使用,应付一般的打印还是 可以的了.代码如下所示: 代码 复制代码 代码如下: //调用PrintControl.ExecWB(?,?)实现直接打印和打印预 ...
- 释放Windows C盘空间 -- 虚拟内存和休眠文件
本文由Suzzz原创,发布于 http://www.cnblogs.com/Suzzz/p/4111718.html ,转载请保留此声明. 项目组有一Windows工作站, 由于需要使用Kinect最 ...
- centos下wget: command not found的解决方法
今天给服务器安装新LNMP环境时,wget 时提示 -bash:wget command not found,很明显没有安装wget软件包.一般linux最小化安装时,wget不会默认被安装,这里是C ...
- JSF结合Spring 引入ViewScope
当JSF项目的faceConfig中配置了Spring的配置代码 <application> <el-resolver>org.springframework.web.jsf. ...
- (转)C# 特性(Attribute)详细介绍
本文转载自:http://www.cnblogs.com/luckdv/articles/1682488.html 1.什么是Atrribute 首先,我们肯定Attribute是一个类,下面是msd ...
- Oracle session出现大量的inactive
一.官网说明 1.1 processes 11gR2 的文档: Property Description Parameter type Integer Default value 100 Modifi ...
- 新版本Ubuntu本地提权漏洞复现
该漏洞在老版本中被修复了,但新的版本还存在漏洞 影响范围:Linux Kernel Version 4.14-4.4,Ubuntu/Debian发行版本 Exp下载地址:http://cyseclab ...