# coding: utf-8

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("F:\TensorflowProject\MNIST_data",one_hot=True)

#每个批次大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples //batch_size

#初始化权值
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1) #初始化一个截断的正态分布
return tf.Variable(initial)

#初始化偏值
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

#卷积层
def conv2d(x,W):
#x input tensor of shape '[batch,in_height,in_width,in_channels]'
#W filter/kernel tensor of shape [filter_height,filter_width,in_channels,out_channels]
#strides[0] = strides[3] = 1, strides[1]代表x方向的步长,strides[2]代表y方向的步长
#padding:A string from :SAME 或者 VALID
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#池化层
def max_pool_2x2(x):
#ksize[1,x,y,1]
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784]) #28*28
y = tf.placeholder(tf.float32,[None,10])

#设置x的格式为4D向量 [batch,in_height,in_width,in_chanels]
x_image = tf.reshape(x,[-1,28,28,1])

#初始化第一个卷积层的权值和偏值
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])

#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #max-pooling,经过池化计算得到一个结果

#初始化第二个卷积层的权值和偏置值
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])

#把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #max-pooling

#28*28的图片第一次卷积后还是28*28,第一次池化后为14*14
#第二次卷积后是14*14,第二次池化后为7*7
#上面步骤完成以后得到64张7*7的平面

#初始化第一个全连接层的权值
W_fc1 = weight_variable([7*7*64,1024]) #上一步有 7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024]) #1024个节点

#把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

#keep_prob标识神经元输出概率
keep_prob =tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

#初始化第二个全连接层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])

#计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)

#交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#用布尔列表存放结果
correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  for epoch in range(21):
    for batch in range(n_batch):
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})

    test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
    print("Iter "+str(epoch)+" ,Testing Accuracy = "+str(test_acc))

##############运行结果

Iter  0  ,Testing Accuracy =  0.9552
Iter 1 ,Testing Accuracy = 0.9743
Iter 2 ,Testing Accuracy = 0.9796
Iter 3 ,Testing Accuracy = 0.9807
Iter 4 ,Testing Accuracy = 0.9849
Iter 5 ,Testing Accuracy = 0.9863
Iter 6 ,Testing Accuracy = 0.9859
Iter 7 ,Testing Accuracy = 0.9885
Iter 8 ,Testing Accuracy = 0.9887
Iter 9 ,Testing Accuracy = 0.9894
Iter 10 ,Testing Accuracy = 0.9907
Iter 11 ,Testing Accuracy = 0.991
Iter 12 ,Testing Accuracy = 0.9903
Iter 13 ,Testing Accuracy = 0.992
Iter 14 ,Testing Accuracy = 0.9904
Iter 15 ,Testing Accuracy = 0.9915
Iter 16 ,Testing Accuracy = 0.9903
Iter 17 ,Testing Accuracy = 0.9912
Iter 18 ,Testing Accuracy = 0.9917
Iter 19 ,Testing Accuracy = 0.9912
Iter 20 ,Testing Accuracy = 0.992

Tensorflow学习练习-卷积神经网络应用于手写数字数据集训练的更多相关文章

  1. TensorFlow------单层(全连接层)实现手写数字识别训练及测试实例

    TensorFlow之单层(全连接层)实现手写数字识别训练及测试实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist ...

  2. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  3. 【TensorFlow-windows】(四) CNN(卷积神经网络)进行手写数字识别(mnist)

    主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...

  4. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  5. 深度学习面试题12:LeNet(手写数字识别)

    目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...

  6. Kannada-MNIST:一个新的手写数字数据集

    TLDR: 我正在传播2个数据集: Kannada-MNIST数据集:28x28灰度图像:60k 训练集 | 10k测试集 Dig-MNIST:28x28灰度图像:10240(1024x10)(见下图 ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. Tensorflow - Tutorial (7) : 利用 RNN/LSTM 进行手写数字识别

    1. 经常使用类 class tf.contrib.rnn.BasicLSTMCell BasicLSTMCell 是最简单的一个LSTM类.没有实现clipping,projection layer ...

  9. Tensorflow手写数字识别训练(梯度下降法)

    # coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #p ...

随机推荐

  1. android 关于Toast重复显示解决方法

    解决思路:   不用计算Toast的时间之类的,就是定义一个全局的成员变量Toast, 这个Toast不为null的时候才去make,否则直接setText.为了按返回键后立即使Toast不再显示,重 ...

  2. LeetCode OJ:Binary Tree Zigzag Level Order Traversal(折叠二叉树遍历)

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

  3. L119

    A big collaboration is trying to understand diseases of the psycheDiseases of the psyche have always ...

  4. SFTP服务器使用指南(1)——安装搭建freeSSHd

    为什么选择freeSSHd 此软件免费 功能非常丰富且强大,同时支持软件用户.本地系统用户和域用户验证 对各用户选择性开放SFTP,Telnet, Tunneling服务 功能和服务完全不受限制的使用 ...

  5. Genymotion的使用 -- A Faster Android Emulator

    Genymotion 安装与配置 1,Genymotion 模拟器 EditText获取焦点时不自动弹出软件盘 选择该模拟器的设置--> 选中Use Virtual keyboard for t ...

  6. controller返回js中文变成?解决方案

    在使用spring-mvc的mvc的时候既享受它带来的便捷,又头痛它的一些问题,比如经典的中文乱码问题.现在是用json作为客户端和服务端 的数据交换格式貌似很流行,但是在springmvc中有时候会 ...

  7. IE8提示console未定义

    在开发的过程中由于调试的原因,在代码中加入console.info("xxxx"),而未进行删除 在IE8下测试该代码所在的页面报错,如下: 需要注意的是,使用console对象查 ...

  8. Java实现Queue类

    Java实现Queue类 import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Sc ...

  9. HTML(超文本标记语言)

    学习地址:https://developer.mozilla.org/zh-CN/docs/Web/Html

  10. DIY ESXI虚拟化服务器再度升级ESXI6.0 (U盘安装Esxi)

    前期我写了一个篇关于<IT屌丝DIY ESXI虚拟化服务器记实 >链接地址:http://lidongni.blog.51cto.com/2554605/1643996,这次主要是在原有的 ...