原文地址:http://www.cnblogs.com/GXZlegend/p/6826475.html


题目描述

In the Byteotian Line Forest there are   trees in a row. On top of the first one, there is a little bird who would like to fly over to the top of the last tree. Being in fact very little, the bird might lack the strength to fly there without any stop. If the bird is sitting on top of the tree no.  , then in a single flight leg it can fly to any of the trees no.i+1,i+2…I+K, and then has to rest afterward.
Moreover, flying up is far harder to flying down. A flight leg is tiresome if it ends in a tree at least as high as the one where is started. Otherwise the flight leg is not tiresome.
The goal is to select the trees on which the little bird will land so that the overall flight is least tiresome, i.e., it has the minimum number of tiresome legs. We note that birds are social creatures, and our bird has a few bird-friends who would also like to get from the first tree to the last one. The stamina of all the birds varies, so the bird's friends may have different values of the parameter  . Help all the birds, little and big!
有一排n棵树,第i棵树的高度是Di。
MHY要从第一棵树到第n棵树去找他的妹子玩。
如果MHY在第i棵树,那么他可以跳到第i+1,i+2,...,i+k棵树。
如果MHY跳到一棵不矮于当前树的树,那么他的劳累值会+1,否则不会。
为了有体力和妹子玩,MHY要最小化劳累值。

输入

There is a single integer N(2<=N<=1 000 000) in the first line of the standard input: the number of trees in the Byteotian Line Forest. The second line of input holds   integers D1,D2…Dn(1<=Di<=10^9) separated by single spaces: Di is the height of the i-th tree.
The third line of the input holds a single integer Q(1<=Q<=25): the number of birds whose flights need to be planned. The following Q lines describe these birds: in the i-th of these lines, there is an integer Ki(1<=Ki<=N-1) specifying the i-th bird's stamina. In other words, the maximum number of trees that the i-th bird can pass before it has to rest is Ki-1.

输出

Your program should print exactly Q lines to the standard output. In the I-th line, it should specify the minimum number of tiresome flight legs of the i-th bird.

样例输入

9
4 6 3 6 3 7 2 6 5
2
2
5

样例输出

2
1


题解

单调队列优化dp

设f[i]表示跳到i的最小劳累值,那么有f[i]=f[j]+(height[i]>=height[j])

由于f[i]-f[j]最大为1,所以从f[k]=f[j]+x转移过来一定不是最优,即f小的更优。

同时应尽量让height[j]大,所以当f相同时,height更大的更优。

据此我们可以维护一个单调队列,其中f单调递增,f相同时height单调递减。

然后判断边界更新f并加入到队列中即可。

#include <cstdio>
int a[1000010] , q[1000010] , f[1000010];
bool cmp(int x , int y)
{
return f[x] == f[y] ? a[x] > a[y] : f[x] < f[y];
}
int main()
{
int n , i , m , k , l , r;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
scanf("%d" , &m);
while(m -- )
{
scanf("%d" , &k);
l = r = q[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
while(l <= r && q[l] < i - k) l ++ ;
f[i] = f[q[l]] + (a[q[l]] <= a[i]);
while(l <= r && cmp(i , q[r])) r -- ;
q[++r] = i;
}
printf("%d\n" , f[n]);
}
return 0;
}

【bzoj3831】[Poi2014]Little Bird 单调队列优化dp的更多相关文章

  1. bzoj3831 [Poi2014]Little Bird 单调队列优化dp

    3831: [Poi2014]Little Bird Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 505  Solved: 322[Submit][ ...

  2. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  3. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

  4. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  5. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  6. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  7. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  8. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  9. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

随机推荐

  1. 10-UIScrollView

    UIScrollView 掌握 UIScrollView的常见属性 UIScrollView的常用代理方法 UIScrollView的缩放 UIScrollView和UIPageControl的分页 ...

  2. vc导出调用dll的两种方式

    一.stdcall 1. #define  DLLEXPORT _declspec(dllexport) _stdcall, int DLLEXPORT func(const char *peer,u ...

  3. mysql基础 反范式化

  4. 从coding.net 克隆(git clone)项目代码到本地报无权限(403)错误 解决方案

    直接从coding.net (git clone)项目代码到本地时,会提示没有权限的错误,如下图: 解决方案:添加远程地址的时候带上用户名及密码即可解决,格式如下: git clone http:// ...

  5. ubuntu中使用apt命令安装ipython失败解决方案

    在最近使用ubuntu安装ipython时,出现如下报错: 出现这个问题,主要是因为apt还在运行,故解决方案为: 1.找到并且杀掉所有的apt-get 和apt进程 运行下面的命令来生成所有含有 a ...

  6. 子查询,用户管理,pymysql使用

    当我们的一条记录 分散不同的表中时,就需要进行多表查询例如 一对一 一对多 多对多 1.笛卡尔积查询 意思就是将两个表中的所有数据 全部关联在一起例如A表有两条 B表有三条 一共有6条会产生大量的错误 ...

  7. 猴子吃桃问题 python

    猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个,第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第10天早上想再吃时,见只剩下一个桃子了.求第 ...

  8. 2,Flask 中的 Render Redirect HttpResponse

    一,Flask中的HTTPResponse 在Flask 中的HttpResponse 在我们看来其实就是直接返回字符串 二,.Flask中的Redirect 每当访问"/redi" ...

  9. 14,flask-sqlalchemy项目配置

    基于一个flask项目,加入flask-SQLAlchemy 1.加入falsk-sqlalchemy第三方组件 from flask import Flask # 导入Flask-SQLAlchem ...

  10. hadoop进阶

    Java 多线程安全机制 1.操作系统有两个容易混淆的概念,进程和线程. 进程:一个计算机程序的运行实例,包含了需要执行的指令:有自己的独立地址空间,包含程序内容和数据:不同进程的地址空间是互相隔离的 ...