题目描述

A group of cows grabbed a truck and ventured on an expedition deep into the jungle. Being rather poor drivers, the cows unfortunately managed to run over a rock and puncture the truck's fuel tank. The truck now leaks one unit of fuel every unit of distance it travels.

To repair the truck, the cows need to drive to the nearest town (no more than 1,000,000 units distant) down a long, winding road. On this road, between the town and the current location of the truck, there are N (1 <= N <= 10,000) fuel stops where the cows can stop to acquire additional fuel (1..100 units at each stop).

The jungle is a dangerous place for humans and is especially dangerous for cows. Therefore, the cows want to make the minimum possible number of stops for fuel on the way to the town. Fortunately, the capacity of the fuel tank on their truck is so large that there is effectively no limit to the amount of fuel it can hold. The truck is currently L units away from the town and has P units of fuel (1 <= P <= 1,000,000).

Determine the minimum number of stops needed to reach the town, or if the cows cannot reach the town at all.

输入输出格式

输入格式:

The first line of the input contains an integer t representing
the number of test cases. Then t test cases follow. Each test case has
the follwing form:

  • Line 1: A single integer, N
  • Lines 2..N+1: Each line contains two space-separated integers
    describing a fuel stop: The first integer is the distance from the town
    to the stop; the second is the amount of fuel available at that stop.
  • Line N+2: Two space-separated integers, L and P

输出格式:

For each test case, output a single integer giving the minimum
number of fuel stops necessary to reach the town. If it is not possible
to reach the town, output -1.

输入输出样例

输入样例#1: 复制

1
4
4 4
5 2
11 5
15 10
25 10
输出样例#1: 复制

2

Input details
The truck is 25 units away from the town; the truck has 10 units
of fuel. Along the road, there are 4 fuel stops at distances 4,
5, 11, and 15 from the town (so these are initially at distances
21, 20, 14, and 10 from the truck). These fuel stops can supply
up to 4, 2, 5, and 10 units of fuel, respectively. Output details:
Drive 10 units, stop to acquire 10 more units of fuel, drive 4 more
units, stop to acquire 5 more units of fuel, then drive to the town. Priority_queue即可解决;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 100005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} struct node {
int dis, sum;
}stp[maxn]; bool cmp(node a, node b) {
return a.dis < b.dis;
} int T;
int l, p;
int main()
{
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
ms(stp); int n; rdint(n);priority_queue<int>q;
for (int i = 0; i < n; i++)rdint(stp[i].dis), rdint(stp[i].sum);
rdint(l); rdint(p);
for (int i = 0; i < n; i++)stp[i].dis = l - stp[i].dis;
stp[n].dis = l; stp[n].sum = 0;
n++;
sort(stp, stp + n, cmp);
int cnt = p, loct = 0;// 油量为cnt,距出发点距离为loct
bool fg = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
int Dis = stp[i].dis - loct;
while (Dis > cnt) {
if (q.empty()) {
fg = 1; break;
}
else {
int tmp = q.top(); q.pop();
cnt += tmp; ans++;
}
}
if (fg)break;
cnt -= Dis;
q.push(stp[i].sum);
loct = stp[i].dis;
}
if (fg)cout << -1 << endl;
else cout << ans << endl;
}
return 0;
}

EXPEDI - Expedition 优先队列的更多相关文章

  1. poj 3431 Expedition 优先队列

    poj 3431 Expedition 优先队列 题目链接: http://poj.org/problem?id=2431 思路: 优先队列.对于一段能够达到的距离,优先选择其中能够加油最多的站点,这 ...

  2. H - Expedition 优先队列 贪心

    来源poj2431 A group of cows grabbed a truck and ventured on an expedition deep into the jungle. Being ...

  3. poj2431 Expedition优先队列

    Description A group of cows grabbed a truck and ventured on an expedition deep into the jungle. Bein ...

  4. SP348 EXPEDI - Expedition

    嘟嘟嘟 水贪心. 当经过一个加油站的时候,记下这个加油站能加的油,然后没油的时候从经过的加油站中选择加油最多的加. #include<cstdio> #include<iostrea ...

  5. 题解 P1016 旅行家的预算

    题目传送门(以纪念调了两个半小时的单调队列) emmm这题单调队列可海星... 因为每个点有油量无限的,但是油箱容量是无限的(正好反的一道题 SP348 EXPEDI - Expedition) 所以 ...

  6. POJ 2431 Expedition (优先队列+贪心)

    题目链接 Description A group of cows grabbed a truck and ventured on an expedition deep into the jungle. ...

  7. 【POJ - 2431】Expedition(优先队列)

    Expedition 直接中文 Descriptions 一群奶牛抓起一辆卡车,冒险进入丛林深处的探险队.作为相当差的司机,不幸的是,奶牛设法跑过一块岩石并刺破卡车的油箱.卡车现在每运行一个单位的距离 ...

  8. poj 2431 Expedition 贪心+优先队列 很好很好的一道题!!!

    Expedition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10025   Accepted: 2918 Descr ...

  9. POJ 2431 Expedition(优先队列、贪心)

    题目链接: 传送门 Expedition Time Limit: 1000MS     Memory Limit: 65536K 题目描述 驾驶一辆卡车行驶L单位距离.最开始有P单位的汽油.卡车每开1 ...

随机推荐

  1. 2015.3.4 VS2005调用MFC dll时报错及解决

    今天在用VS2005调用MFCdll时报错: 正试图在 os 加载程序锁内执行托管代码.不要尝试在 DllMain 或映像初始化函数内运行托管代码... 原因是我在dll的CSpaceApp::CSp ...

  2. Hibernate面试总结

    SSH原理总结 Hibernate工作原理及为什么要用: 原理: hibernate,通过对jdbc进行封装,对 java类和 关系数据库进行mapping,实现了对关系数据库的面向对象方式的操作,改 ...

  3. CreateMutex实现只能打开一个客户端

    #include "stdafx.h" #include <Windows.h> #include <iostream> using namespace s ...

  4. spring的配置文件在web.xml中加载的方式

    web.xml加载spring配置文件的方式主要依据该配置文件的名称和存放的位置不同来区别,目前主要有两种方式. 1.如果spring配置文件的名称为applicationContext.xml,并且 ...

  5. 10-08C#基础--进制转换

    (一).数制 计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径.节省设备等优点,为了便于描述,又常用八.十六进制作为二进制的缩写.一般计数都采用进位计数,其特点 ...

  6. 问题:oracle DECLARE 变量重复利用;结果:Oracle 定义变量总结

    首先,当在cmd里办入scott密码提示错误时,可以这样改一下,scott的解锁命令是: 以system用户登录:cmdsqlplus system/tigertigeralter user scot ...

  7. leetcode516

    public class Solution { public int LongestPalindromeSubseq(string s) { int[,] dp = new int[s.Length, ...

  8. Shiro权限框架简介

    http://blog.csdn.net/xiaoxian8023/article/details/17892041   Shiro权限框架简介 2014-01-05 23:51 3111人阅读 评论 ...

  9. hibernate学习笔记(4)表单操作

    User.hbm.xml的表单配置: ①主键 <id name="id" type="java.lang.Integer"> <column ...

  10. PL/SQL批处理语句(二)FORALL

    PL/SQL批处理语句(二)FORALL 我们知道PL/SQL程序中运行SQL语句是存在开销的,因为SQL语句是要提交给SQL引擎处理,这种在PL/SQL引擎和SQL引擎之间的控制转移叫做上下文却换, ...