题目描述

今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party。 hidadz带着朋友们来到花园中,打算坐成一排玩游戏。为了游戏不至于无聊,就座的方案应满足如下条件:

对于任意连续的一段,男孩与女孩的数目之差不超过k。

很快,小朋友便找到了一种方案坐了下来开始游戏。hidadz的好朋友Susie发现,这样的就座方案其实是很多的,所以大家很快就找到了一种,那么到底有多少种呢?热爱数学的hidadz和她的朋友们开始思考这个问题……

假设参加party的人中共有n个男孩与m个女孩,你是否能解答Susie和hidadz的疑问呢?由于这个数目可能很多,他们只想知道这个数目除以12345678的余数。

输入输出格式

输入格式:

输入文件party.in仅包含一行共3个整数,分别为男孩数目n, 女孩数目m, 常数k。

输出格式:

输出文件party.out应包含一行,为题中要求的答案。

输入输出样例

输入样例#1:
复制

1 2 1
输出样例#1: 复制

1

说明

对于30%的数据,n , m ≤ 20;

对于100%的数据, n , m ≤ 150,k ≤ 20。

设 dp[ i ][ j ][ x ][ y ]表示表示放了i个男生,j个女生,所有后缀中,男生减女生的差最大为x,女生减男生的差最大为y的方案数;

枚举下一个位置;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 1000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n, m, k;
int dp[200][200][23][23];
int mode = 12345678; int main() {
//ios::sync_with_stdio(0);
cin >> n >> m >> k;
dp[0][0][0][0] = 1;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
for(int x=0;x<=k;x++)
for (int y = 0; y <= k; y++) {
if (dp[i][j][x][y]) {
int tp = dp[i][j][x][y];
(dp[i + 1][j][x + 1][max(y - 1, 0)] += tp) %= mode;
(dp[i][j + 1][max(x - 1, 0)][y + 1] += tp) %= mode;
}
}
}
}
ll res = 0;
for (int i = 0; i <= k; i++) {
for (int j = 0; j <= k; j++) {
res = (res + dp[n][m][i][j]) % mode;
}
}
cout << (ll)res << endl;
return 0;
}

[ZJOI2008]生日聚会 BZOJ1037 dp的更多相关文章

  1. BZOJ 1037: [ZJOI2008]生日聚会Party( dp )

    dp(i, j, a, b)表示选了i个男生, j个女生, 后缀中男生比女生多a(最多), 女生比男生多b(最多). dp(i+1, j, a+1, max(0, b-1)) += dp(i, j, ...

  2. BZOJ1037:[ZJOI2008]生日聚会Party(DP)

    Description 今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party.hidadz带着朋友们来到花园中,打算坐成一排玩游戏. 为了游戏不至于无聊,就座的方案应满足如下条件: ...

  3. [Bzoj1037][ZJOI2008]生日聚会(DP)

    Description 题目链接 Solution 这题状态比较难想, \(dp[i][j][g][h]\)表示强i个人有j个男生,在某个区间男生最多比女生多g人,女生最多比男生多h人的方案数,然后D ...

  4. [luogu2592 ZJOI2008] 生日聚会 (计数dp)

    题目描述 今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party. hidadz带着朋友们来到花园中,打算坐成一排玩游戏.为了游戏不至于无聊,就座的方案应满足如下条件: 对于任意连续 ...

  5. BZOJ1037 [ZJOI2008]生日聚会Party 【DP】

    1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2800  Solved: 1654 [Submi ...

  6. BZOJ 1037: [ZJOI2008]生日聚会Party [序列DP]

    1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2249  Solved: 1337[Submit] ...

  7. 【BZOJ1037】[ZJOI2008]生日聚会(动态规划)

    [BZOJ1037][ZJOI2008]生日聚会(动态规划) 题面 BZOJ 洛谷 题解 假设前面的都合法,但是在加完当前的最后一个人之后变得不合法了,那么意味着一定有着一个后缀不合法.把男生看成\( ...

  8. bzoj千题计划125:bzoj1037: [ZJOI2008]生日聚会Party

    http://www.lydsy.com/JudgeOnline/problem.php?id=1037 一个区间是否满足 任意连续的一段,男孩与女孩的数目之差不超过k, 取决于男孩与女孩数目之差的最 ...

  9. BZOJ 1037: [ZJOI2008]生日聚会Party 四维DP

    1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1650  Solved: 971[Submit][ ...

随机推荐

  1. SQL基础(3)

    SQL FULL JOIN (1)SQL FULL JOIN关键字 只要其中某个表存在匹配,FULL JOIN 关键字就会返回行. (2)语法 SELECT column_name(s) FROM t ...

  2. Windows_Server_2008远程桌面多用户登陆的配置方法

    开启远程桌面后,Windows Vista(或Windows 2008)下默认只支持一个administrator用户登陆,一个登录后另一个就被踢掉了,下面提供允许同一个用户名同时多个用户登录的配置方 ...

  3. jvm调优(二)

    栈内存溢出,主要发生在大数据批量处理的情况,一般解决方案:1.加大栈内存 2.分批处理(用事物,全通过则通过,没有通过则回滚) cpu过高,死锁啊,内存过高啊,i/0问题啊 都可以看 线程栈 jsta ...

  4. vue-cli脚手架build目录中的karma.conf.js配置文件

    本文系统讲解vue-cli脚手架build目录中的karma.conf.js配置文件 这个配置文件是命令 npm run unit 的入口配置文件,主要用于单元测试 这条命令的内容如下 "c ...

  5. paramiko远程

    安装paramiko后,看下面例子: 复制代码代码如下: import paramiko #设置ssh连接的远程主机地址和端口t=paramiko.Transport((ip,port))#设置登录名 ...

  6. scrapy xpath 节点关系

    父节点 子节点 兄弟节点 先辈节点 后代节点

  7. Android键盘属性

    在主xml中android:windowSoftInputMode的属性"stateUnspecified"软键盘的状态(是否它是隐藏或可见)没有被指定.系统将选择一个合适的状态或 ...

  8. js 中的apply

    之一------(函数的劫持与对象的复制)关于对象的继承,一般的做法是用复制法: Object.extend 见protpotype.js 的实现方法: Object.extend = functio ...

  9. C#正则表达式匹配双引号

    html: <img class="bubble large" src="/images/hero-logos/cog.svg" width=" ...

  10. ASCII / Unicode / UTF-8 / GBK

    1 ASCII ASCII(American Standard Code for Information Interchange,美国标准信息交换代码)是基于拉丁字母的一套电脑编码系统,主要用于显示现 ...