Description

Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。FJ打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是FJ不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ还没有决定在哪些土地上种草。 作为一个好奇的农场主,FJ想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮FJ算一下这个总方案数。

Input

* 第1行: 两个正整数M和N,用空格隔开

* 第2..M+1行: 每行包含N个用空格隔开的整数,描述了每块土地的状态。输入的第i+1行描述了第i行的土地。所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块地上不适合种草

Output

* 第1行: 输出一个整数,即牧场分配总方案数除以100,000,000的余数

Sample Input

2 3
1 1 1
0 1 0

Sample Output

9

解题思路 :以样例数据第一行为例,三个格子都可以放牧,即每个格子都可以选择放,或不放。再考虑附加条件“相邻格子不可同时放牧”,那么我们可以列出单看第一行时的所有可行状态如下(1代表放牧,0代表不放牧)

编号 状态
1 0 0 0 
2 0 0 1
3 0 1 0
4 1 0 0
5 1 0 1
(表1)

由此,可将表中的状态看作二进制表示,那么,只需将每种状态转化为相应的十进制数,即可只用一个数字,就能表示某一种状态,如下表:

编号 二进制 十进制
1 0 0 0 0
2 0 0 1 1
3 0 1 0 2
4 1 0 0 4
5 1 0 1 5
(表2)

这种用一个数来表示一组数,以降低表示状态所需的维数的解题手段,就叫做状态压缩。

至此我们看到,在只考虑第一行的时候,有5种可行的放牧方案,但这只是我们要做的第一步。接下来要将第二行纳入考虑:

首先思考:纳入第二行后,会对当前问题造成什么样的影响?

答案还是那句话:“ 相邻格子不可同时放牧 ”!

也就是说,不止左右相邻不可以,上下之间也不能存在相邻的情况。

首先观察第二行,只有中间的格子可以放牧,那么我们的状态表格就可以相对简单些了~如下:

编号 二进制 十进制
1 0 0 0 0
2 0 1 0 2
(表3)

只有两种可行状态,那么我们不妨一个一个来考察:

1、当第二行的状态为编号1时,第二行的三个格子都没有放牧,那么就不会与第一行的任何情况有冲突,第一行的5种方案都可行,即:第二行选用编号1的状态时,结合第一行,可得到5种可行的放牧方案;

2、当第二行的状态为编号2时,第二行中间的格子已经放牧了,那么第一行中间的格子就不可以放牧。看表2,发现其中第3种状态与当前第二行冲突,那么第一行只有4种方案是可行的,即:第二行选用编号2的状态时,结合第一行,可得到4种可行的放牧方案;

那么,在样例数据给出的情况下,我们的最终答案即为5+4=9;

通过对样例数据的分析即可以发现不同状态之间的关系:

以 dp[i][state(j)] 来表示对于 前i行 , 第i行 采用 第j种状态 时可以得到的 可行方案总数!

例如:回头看样例数据,dp[2][1]即代表第二行使用第2中状态(0 1 0)时可得的方案数,即为4;

那么,可得出状态转移方程为:

dp[i][state(j)]=dp[i-1][state(k1)]+dp[i-1][state(k2)]+......+dp[i-1][state(kn)] (kn即为上一行可行状态的编号,上一行共有n种可行状态)

最终ans=dp[m][state(k1)]+dp[m][state(k2)]+......+dp[m][state(kn)]; (kn即为 最后一 行 (第m行) 可行状态的编号)

AC代码:

#include<stdio.h>
#include<string.h>
const int mod = ;
int n,m,tot,v[],ans;//v[i]//第i行整行的情况
int dp[][],s[];//dp对于前i行,每行有前j种可能状态时的解
//s[i]存储每行所有可行的状态
int main( )
{
int a;
while(scanf("%d%d",&n,&m)!=EOF)
{
tot=ans=;
memset(dp,,sizeof(dp));
memset(s,,sizeof(s));
memset(v,,sizeof(v)); for(int i= ; i<<<m ; i++)
if((i&(i<<))==)///记录不相邻的状态
s[++tot]=i;
for(int i= ; i<=n ; i++)
{
for(int j= ; j<=m ; j++)
{
scanf("%d",&a);
if(a==)
v[i]+=<<j-;//相反方式存储
}
}
dp[][]=;
for(int i= ; i<=n ; i++)
{
for(int j= ; j<=tot ; j++)//判断第i行 假如按状态j放牛的话行不行
{
if(s[j]&v[i])//剪枝 判断上一行与其状态是否满足
continue;
for(int k= ; k<=tot ; k++)
{
if(s[j]&s[k])
continue;
dp[i][j]=(dp[i][j]+dp[i-][k])%mod;
}
}
} for(int i=;i<=tot;i++)
{
if(s[i]&v[n]) continue;
ans=(ans+dp[n][i])%mod;
}
printf("%d\n",ans);
}
return ;
}

BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP的更多相关文章

  1. bzoj1725 [Usaco2006 Nov]Corn Fields牧场的安排(状压dp)

    1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 714  Solved: 502 ...

  2. 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP

    [BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...

  3. bzoj1725: [Usaco2006 Nov]Corn Fields牧场的安排(状压dfs)

    1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1122  Solved: 80 ...

  4. BZOJ 1725: [Usaco2006 Nov]Corn Fields牧场的安排 状压动归

    Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧 ...

  5. [Usaco2006 Nov]Corn Fields牧场的安排 壮压DP

    看到第一眼就发觉是壮压DP 然后就三进制枚举子集吧. 这题真是壮压入门好题... 对于dp[i][j] 表示第i行,j状态下前i行的分配方案数. 那么dp[i][j]肯定是从i-1行转过来的 那么由于 ...

  6. BZOJ1725: [Usaco2006 Nov]Corn Fields牧场的安排

    1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 400  Solved: 290 ...

  7. 【bzoj1725】[USACO2006 Nov]Corn Fields牧场的安排 状态压缩dp

    题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...

  8. BZOJ1725,POJ3254 [Usaco2006 Nov]Corn Fields牧场的安排

    题意 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行\((1 \leq M \leq 12, 1 \leq N \leq 12)\),每一格都是一块正方形的土地.FJ打算在牧场 ...

  9. [Usaco2006 Nov]Corn Fields牧场的安排

    题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...

随机推荐

  1. chosen.jquery插件的使用

    前几天在jQuery官网看到了插件里面有400多个插件,看了下效果都很好,以后项目里面难免会用到.于是下了个决定,有时间把官网的插件都研究下,并简单介绍他的用法,方便以后的使用. 下面将要提到的是jQ ...

  2. linux磁盘分区fdisk分区和parted分区

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 磁盘分区 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ...

  3. Codeforces Good Bye 2018 D (1091D) New Year and the Permutation Concatenation

    题意:给n!个n的排列,按字典序从小到大连成一条序列,例如3的情况为:[1,2,3, 1,3,2, 2,1,3 ,2,3,1 ,3,1,2 ,3,2,1],问其中长度为n,且和为sum=n*(n+1) ...

  4. SQL查询语句 [1]

    一.使用字符串作为条件查询 在 Home/controller/UserController.class.php 下插入 <?php namespace Home\Controller; use ...

  5. opencv3更换图片背景

    #include <opencv2/opencv.hpp>#include <iostream> using namespace std;using namespace cv; ...

  6. Zbar 大图像分析

    博客转载自:https://blog.csdn.net/sunflower_boy/article/details/50429252 为了减少处理时间,可以设定更大的扫描间距,减少不必要的解码类型,去 ...

  7. GCD 学习(四) dispatch_group

    如果想在dispatch_queue中所有的任务执行完成后在做某种操作,在串行队列中,可以把该操作放到最后一个任务执行完成后继续,但是在并行队列中怎么做呢.这就有dispatch_group 成组操作 ...

  8. etl 获取列数据类型

    QueryInfo info = new QueryInfo(); info.CustomSQL = @" select column_name, data_type, data_preci ...

  9. (转)Linux操作系统下VMware的多网卡桥接转换

    VMware,鼎鼎大名的虚拟机软件,没有人不知道吧?当然,在Linux下使用虚拟机软件,并不一定需要使用VMWare,Xen也是非常不错的选择,有很多评测就认为XEN的表现优于VMware.可惜的是X ...

  10. struts1和struts2之间的区别

    从action类上分析:1.Struts1要求Action类继承一个抽象基类.Struts1的一个普遍问题是使用抽象类编程而不是接口. 2. Struts 2 Action类可以实现一个Action接 ...