BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
Description
Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。FJ打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是FJ不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ还没有决定在哪些土地上种草。 作为一个好奇的农场主,FJ想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮FJ算一下这个总方案数。
Input
* 第1行: 两个正整数M和N,用空格隔开
* 第2..M+1行: 每行包含N个用空格隔开的整数,描述了每块土地的状态。输入的第i+1行描述了第i行的土地。所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块地上不适合种草
Output
* 第1行: 输出一个整数,即牧场分配总方案数除以100,000,000的余数
Sample Input
1 1 1
0 1 0
Sample Output
解题思路 :以样例数据第一行为例,三个格子都可以放牧,即每个格子都可以选择放,或不放。再考虑附加条件“相邻格子不可同时放牧”,那么我们可以列出单看第一行时的所有可行状态如下(1代表放牧,0代表不放牧)
| 编号 | 状态 |
| 1 | 0 0 0 |
| 2 | 0 0 1 |
| 3 | 0 1 0 |
| 4 | 1 0 0 |
| 5 | 1 0 1 |
由此,可将表中的状态看作二进制表示,那么,只需将每种状态转化为相应的十进制数,即可只用一个数字,就能表示某一种状态,如下表:
| 编号 | 二进制 | 十进制 |
| 1 | 0 0 0 | 0 |
| 2 | 0 0 1 | 1 |
| 3 | 0 1 0 | 2 |
| 4 | 1 0 0 | 4 |
| 5 | 1 0 1 | 5 |
这种用一个数来表示一组数,以降低表示状态所需的维数的解题手段,就叫做状态压缩。
至此我们看到,在只考虑第一行的时候,有5种可行的放牧方案,但这只是我们要做的第一步。接下来要将第二行纳入考虑:
首先思考:纳入第二行后,会对当前问题造成什么样的影响?
答案还是那句话:“ 相邻格子不可同时放牧 ”!
也就是说,不止左右相邻不可以,上下之间也不能存在相邻的情况。
首先观察第二行,只有中间的格子可以放牧,那么我们的状态表格就可以相对简单些了~如下:
| 编号 | 二进制 | 十进制 |
| 1 | 0 0 0 | 0 |
| 2 | 0 1 0 | 2 |
只有两种可行状态,那么我们不妨一个一个来考察:
1、当第二行的状态为编号1时,第二行的三个格子都没有放牧,那么就不会与第一行的任何情况有冲突,第一行的5种方案都可行,即:第二行选用编号1的状态时,结合第一行,可得到5种可行的放牧方案;
2、当第二行的状态为编号2时,第二行中间的格子已经放牧了,那么第一行中间的格子就不可以放牧。看表2,发现其中第3种状态与当前第二行冲突,那么第一行只有4种方案是可行的,即:第二行选用编号2的状态时,结合第一行,可得到4种可行的放牧方案;
那么,在样例数据给出的情况下,我们的最终答案即为5+4=9;
通过对样例数据的分析即可以发现不同状态之间的关系:
以 dp[i][state(j)] 来表示对于 前i行 , 第i行 采用 第j种状态 时可以得到的 可行方案总数!
例如:回头看样例数据,dp[2][1]即代表第二行使用第2中状态(0 1 0)时可得的方案数,即为4;
那么,可得出状态转移方程为:
dp[i][state(j)]=dp[i-1][state(k1)]+dp[i-1][state(k2)]+......+dp[i-1][state(kn)] (kn即为上一行可行状态的编号,上一行共有n种可行状态)
最终ans=dp[m][state(k1)]+dp[m][state(k2)]+......+dp[m][state(kn)]; (kn即为 最后一 行 (第m行) 可行状态的编号)
AC代码:
#include<stdio.h>
#include<string.h>
const int mod = ;
int n,m,tot,v[],ans;//v[i]//第i行整行的情况
int dp[][],s[];//dp对于前i行,每行有前j种可能状态时的解
//s[i]存储每行所有可行的状态
int main( )
{
int a;
while(scanf("%d%d",&n,&m)!=EOF)
{
tot=ans=;
memset(dp,,sizeof(dp));
memset(s,,sizeof(s));
memset(v,,sizeof(v)); for(int i= ; i<<<m ; i++)
if((i&(i<<))==)///记录不相邻的状态
s[++tot]=i;
for(int i= ; i<=n ; i++)
{
for(int j= ; j<=m ; j++)
{
scanf("%d",&a);
if(a==)
v[i]+=<<j-;//相反方式存储
}
}
dp[][]=;
for(int i= ; i<=n ; i++)
{
for(int j= ; j<=tot ; j++)//判断第i行 假如按状态j放牛的话行不行
{
if(s[j]&v[i])//剪枝 判断上一行与其状态是否满足
continue;
for(int k= ; k<=tot ; k++)
{
if(s[j]&s[k])
continue;
dp[i][j]=(dp[i][j]+dp[i-][k])%mod;
}
}
} for(int i=;i<=tot;i++)
{
if(s[i]&v[n]) continue;
ans=(ans+dp[n][i])%mod;
}
printf("%d\n",ans);
}
return ;
}
BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP的更多相关文章
- bzoj1725 [Usaco2006 Nov]Corn Fields牧场的安排(状压dp)
1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 714 Solved: 502 ...
- 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
[BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...
- bzoj1725: [Usaco2006 Nov]Corn Fields牧场的安排(状压dfs)
1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1122 Solved: 80 ...
- BZOJ 1725: [Usaco2006 Nov]Corn Fields牧场的安排 状压动归
Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧 ...
- [Usaco2006 Nov]Corn Fields牧场的安排 壮压DP
看到第一眼就发觉是壮压DP 然后就三进制枚举子集吧. 这题真是壮压入门好题... 对于dp[i][j] 表示第i行,j状态下前i行的分配方案数. 那么dp[i][j]肯定是从i-1行转过来的 那么由于 ...
- BZOJ1725: [Usaco2006 Nov]Corn Fields牧场的安排
1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 400 Solved: 290 ...
- 【bzoj1725】[USACO2006 Nov]Corn Fields牧场的安排 状态压缩dp
题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...
- BZOJ1725,POJ3254 [Usaco2006 Nov]Corn Fields牧场的安排
题意 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行\((1 \leq M \leq 12, 1 \leq N \leq 12)\),每一格都是一块正方形的土地.FJ打算在牧场 ...
- [Usaco2006 Nov]Corn Fields牧场的安排
题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...
随机推荐
- ActiveMQ (三) Spring整合JMS入门
Spring整合JMS入门 前提:安装好了ActiveMQ ActiveMQ安装 Demo结构: 生产者项目springjms_producer: pom.xml <?xml versio ...
- actionbar中添加searchview并监听期伸缩/打开的方法
首先在xml中设置actionviewclass <item android:id="@+id/m1" android:title="setting" a ...
- Android中无标题样式和全屏样式学习
在进行UI设计时,我们经常需要将屏幕设置成无标题栏或者全屏.要实现起来也非常简单,主要有两种方法:配置xml文件和编写代码设置. 1.在xml文件中进行配置 在项目的清单文件AndroidManife ...
- 【oracle】首次启动SQL Developer配置java.exe出错(Could not find jvm.cfg! )
1.环境 win7/8/8.1 x64,Oracle 11g r2,jdk7 x64 2.问题 第一次启动Oracle SQL Developer的时候会让我们填写Java.exe的路径,我在jdk ...
- wamp配置小细节
1. 问题:在安装后,把phpMyadmin改密码后,再次登陆会提示出错.访问被拒绝. 原因:这是因为WampServer设置了直接登陆. 解法:修改config.inc.php文件中$cfg['Se ...
- MySql 5.7中添加用户,新建数据库,用户授权,删除用户,修改密码
转自http://blog.csdn.net/w690333243/article/details/76576952 1.新建用户 创建test用户,密码是1234. MySQL -u root -p ...
- Struts2框架06 ValueStack
原文地址:点击前往 1 什么是ValueStack 称为值栈,Struts提供的共享数据的数据结构 2 为什么要使用ValueStack 从控制器向浏览器传递数据 存储与请求相关的对象信息(sessi ...
- IDEA java 代码格式化统一
Intellij idea 安装格式化插件 ECLIPSE CODE FORMATTER:1,安装插件:网络安装:选择Setting =>Plugins=>Browse repositor ...
- 解决校园Dr客户端端口占用问题(2)
win + R -> 输入cmd回车 -> 输入netsh winsock reset重启 -> 好了享受上网的快乐吧骚年
- EZOJ #73
传送门 分析 我们知道如果对于模数$P$有$gcd(x,P) = 1$则$x$一定有且仅有一个逆元,可以表示为 $x \equiv \frac{y}{1} (mod P)$ 即为$xy \equiv ...