首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走;

然后就是如何处理不能走的点:把点sort一遍,按横纵坐标降序排列,这样前面的点可能会包含后面的点,所以算方案数时时要考虑。

算出来从$(0,0)$到$橙色的点(x,y)$的方案数为$C_{x+y}^x$,再减去蓝色点*蓝色点到橙色点方案数,才是到橙色点的方案数;

注意每条非法路径只会被第一个经过他的非法的点记录。

在最后把每个店的方案数再乘上到终点的代价,就是在模其中一个数意义下的解;

最最后用中国剩余定理合并。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define ll long long
#define R register ll
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
struct node {int x,y;
bool operator <(const node& b) const{return x==b.x?y<b.y:x<b.x;}
} a[];
ll f[],p[],ans[],M[],T[];
ll fac[],inv[];
inline ll C(ll n,ll m,ll p) {
if(n<m) return ; return fac[n]*inv[fac[m]*fac[n-m]%p]%p;
}
inline ll L(ll n,ll m,ll p) {
if(n<m) return ; if(!n) return ;
return L(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
ll n,m,t,mod,tot,S=;
signed main() {
n=g(),m=g(),t=g(),mod=g();
if(mod==) p[++tot]=mod;
else p[]=,p[]=,p[]=,p[]=,tot=;
for(R i=;i<=t;++i) a[i].x=g(),a[i].y=g();
sort(a+,a+t+); for(R i=;i<=tot;++i) S*=p[i];
for(R i=;i<=tot;++i) M[i]=S/p[i]; inv[]=,fac[]=;
for(R k=;k<=tot;++k) {
R P=p[k]; for(R i=;i<P;++i) inv[i]=(P-P/i*inv[P%i]%P)%P;
T[k]=inv[M[k]%P]; for(R i=;i<P;++i) fac[i]=fac[i-]*i%P;
ans[k]=L(n+m,n,P); for(R i=;i<=t;++i) {
f[i]=L(a[i].x+a[i].y,a[i].x,P);
for(R j=;j<i;++j) if(a[j].x<=a[i].x&&a[j].y<=a[i].y)
f[i]+=(P-f[j]*L(a[i].x+a[i].y-a[j].x-a[j].y,a[i].x-a[j].x,P)%P)%P;
f[i]%=P; ans[k]+=P-L(n+m-a[i].x-a[i].y,n-a[i].x,P)*f[i]%P;
} ans[k]%=P;
} ll anss=; for(R i=;i<=tot;++i) anss+=ans[i]*M[i]%mod*T[i]%mod;
printf("%lld\n",anss%mod);

2019.05.18

Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT的更多相关文章

  1. 洛谷 P4478 [BJWC2018]上学路线

    洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...

  2. P4478 [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  3. BJWC2018上学路线

    题目描述 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的 ...

  4. bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp

    LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...

  5. [luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)

    传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路 ...

  6. [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  7. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  8. Luogu P2480 [SDOI2010]古代猪文 卢卡斯+组合+CRT

    好吧刚开始以为扩展卢卡斯然后就往上套..结果奇奇怪怪又WA又T...后来才意识到它的因子都是质数...qwq怕不是这就是学知识学傻了.. 题意:$ G^{\Sigma_{d|n} \space C_n ...

  9. Luogu [P1958] 上学路线_NOI导刊2009普及(6)

    上学路线_NOI导刊2009普及(6) 题目详见:上学路线_NOI导刊2009普及(6) 这是一道基础的DFS(深搜)题,堪称模板,是新手练习搜索与回溯的好题选. 大致思路:从(1,1)开始搜索,每次 ...

随机推荐

  1. bzoj 4500: 矩阵 差分约束系统

    题目: Description 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 选择一行, 该行每个格子的权值加1或减1. 选择一列, 该列每个格子的权值加1或减1. 现在有K ...

  2. POJ2442:Sequence

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:http://poj.org/problem?id=2442 我们先简化题意,假设只有两 ...

  3. 对API的理解

    一. API(Application Programming Interface,应用程序编程接口) 1)定义:API是远程服务器或者操作系统的一些函数,是它们的一部分: 2)功能:用来接收应用程序( ...

  4. 【转】 Pro Android学习笔记(四二):Fragment(7):切换效果

    目录(?)[-] 利用setTransition 利用setCustomAnimations 通过ObjectAnimator自定义动态效果 程序代码的编写 利用fragment transactio ...

  5. 【转】Pro Android学习笔记(三十):Menu(1):了解Menu

    目录(?)[-] 创建Menu MenuItem的属性itemId MenuItem的属性groupId MenuItem的属性orderId MenuItem的属性可选属性 Menu触发 onOpt ...

  6. Java常见设计模式之观察者模式

    在阎宏博士的<JAVA与模式>一书中开头是这样描述观察者(Observer)模式的: 观察者模式是对象的行为模式,又叫发布-订阅(Publish/Subscribe)模式.模型-视图(Mo ...

  7. VisualGDB系列9:配置VS直接通过SSH方式访问Linux项目

    根据VisualGDB官网(https://visualgdb.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指正. 本文介绍如何使用VS和VisualGDB ...

  8. centos6 启动流程

    具体过程:1)加载BIOS的硬件信息,执行BIOS内置程序.2)读取MBR(Master Boot Record)中Boot Loader中的引导信息.3)加载内核Kernel boot到内存中.4) ...

  9. javaScript之事件处理程序

    事件就是用户或浏览器自身执行的某个动作,JavaScript与HTML的交互也是通过事件实现的.而相应某个事件的函数就叫做事件处理函数.包括以下几种: 1.HTML事件处理程序    某个元素支持的每 ...

  10. Hander----使用

    public class MainActivity extends Activity { private EditText UITxt; private Button updateUIBtn; pri ...