【洛谷P1962】斐波那契数列
斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962

矩阵A
1,1
1,0
用A^k即可求出feb(k)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long n=,k;
const long long MOD=;
struct Matrix{
long long m[][];
};
Matrix A,E,K; Matrix cheng(Matrix X,Matrix Y)
{
Matrix C;
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++)
{
C.m[i][j]=;
for(long long l=;l<=n;l++)
C.m[i][j]=(C.m[i][j]+(X.m[i][l]*Y.m[l][j]))%MOD;
}
return C;
}
Matrix qsort(Matrix X,long long p)
{
Matrix S=E;
while(p)
{
if(p&) S=cheng(S,X);
X=cheng(X,X);
p>>=;
}
return S;
}
int main()
{
scanf("%lld",&k);
E.m[][]=;
E.m[][]=;
A.m[][]=;
A.m[][]=;
A.m[][]=;
K=qsort(A,k);
printf("%lld\n",K.m[][]);
return ;
}
【洛谷P1962】斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷 P1962 斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- 洛谷P1962 斐波那契数列
传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...
随机推荐
- Java 实践
/** *宠物就是一个标准,包含多类宠物 *定义宠物标准接口Pet *定义Cat和Dog两个Pet接口的子类 *使用链表结构动态存储宠物信息 *定义商店类(工厂类),负责宠物的上架(链表添加).下架( ...
- TestNG的testng.xml配置概述
TestNG提供的annotaions用来辅助定义测试类. TestNG的testng.xml配置文件用来辅助定义执行什么样的测试,即testng.xml更像是一个测试规划. testng.xml配置 ...
- svn被锁 The project was not built due to "org.apache.subversion.javahl.ClientException: Attempted to lock an already-locked dir
解决办法 : 右键该项目 ,---->Team---->选"Team"-->"Refresh/Cleanup",并确认"Ref ...
- Unity 将一个类序列化并以 ".asset" 类型存储在 Resources 文件夹下
概念: 序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程.在序列化期间,对象将其当前状态写入到临时或持久性存储区.以后,可以通过从存储区中读取或反序列化对象的状态 ...
- git使用笔记-提高篇-重置揭密
https://git-scm.com/book/zh/v2/Git-%E5%B7%A5%E5%85%B7-%E9%87%8D%E7%BD%AE%E6%8F%AD%E5%AF%86 重置揭密 在继续了 ...
- 117、python MySQLdb在windows环境下的快速安装、问题解决方式
使用Python访问MySQL,需要一系列安装 Linux下MySQLdb安装见 Python MySQLdb在Linux下的快速安装 http://blog.csdn.NET/wklken/arti ...
- python 钩子函数
python 在windows下监听键盘按键 使用到的库 ctypes(通过ctypes来调用Win32API, 主要就是调用钩子函数) 使用的Win32API SetWindowsHookEx(), ...
- jq学习总结之方法
三.方法 1.length 2.index()3.get() reverse()4.not()5.filter()6.find()7.each()8.addBack()9.attr()10.toggl ...
- 2.C#中的常用快捷键
快速对齐代码: Ctrl+K+D: 快速对齐代码 (如果代码语法错误,就不能使用) Ctrl+Z: 撤销 Ctrl+S:保存 没事就Ctrl+S一下,防止因为电脑断电,代码全部丢失 Ctr ...
- es6-正则
RegExp构造函数 在ES5中,RegExp构造函数的参数有两种情况. 第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag). var regex = new RegExp( ...