1087: [SCOI2005]互不侵犯King

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3135  Solved: 1825
[Submit][Status][Discuss]

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

Solution

  本蒟蒻做的第一道状压DP,搞了一下午才A掉。

  对于棋盘中每个位置都有两种状态——放和不放,我是用1来表示放国王,用0来表示不放国王,这样就可以用一个十进制数来表示每一行放国王的某一种方案。再看一眼数据,这么小直接枚举啊!!但这枚举也是有点讲究的。

  首先我们枚举每一行所有放国王的可能的方案,我们发现如果某种方案不合法,那么(这种方案)&(这种方案>>1)一定不为零,这样就可以在枚举时排除不合法方案。接下来就是DP了。

  说是DP,其实和枚举没差了。状态转移方程为:f[i+1][t+num[x]][x]+=f[i][t][y],第一维表示第i行,第二维表示第i行及以上共放了几个国王,第三维表示第i行放国王的方案。也就是说,我们需要四重循环来花式枚举状态,枚举第 i 行,枚举当前行的方案,枚举下一行的方案,枚举放几个国王。DP完后将最后一行的所有位置的方案数相加即是正解。

  最重要的一点:

  不开long long见祖宗,十年OI一场空

  下面是AC代码:

 #include <cstdio>
int N,K,imp;
int num[],jdg[];
long long f[][][];
void enumeration(){
for(int i=;i<=imp;++i)
if(!(i&(i<<))){
int temp=i;
while(temp) {num[i]+=(temp&); temp>>=;}
jdg[i]=; f[][num[i]][i]=;
}
}
long long int DP(){ //别被这缩进吓到了...
for(int i=;i<N;++i)
for(int j=;j<=imp;++j)
if(jdg[j])
for(int k=;k<=imp;++k)
if(jdg[k])
if((!(j&k))&&(!((j>>)&k))&&(!((j<<)&k)))
for(int t=num[j];t+num[k]<=K;++t)
f[i+][t+num[k]][k]+=f[i][t][j];
long long int ret=;
for(int i=;i<=imp;++i) ret+=f[N][K][i];
return ret;
}
int main(){
scanf("%d%d",&N,&K);
imp=(<<N)-; enumeration();
printf("%lld",DP());
return ;
}

【状态压缩DP】【BZOJ1087】【SCOI2005】互不侵犯king的更多相关文章

  1. 【状态压缩DP】BZOJ1087-[SCOI2005]互不侵犯King

    [题目大意] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. [思路] 先预处理每一行可行的状态 ...

  2. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  3. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  4. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  5. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  6. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  7. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  8. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  9. bzoj 1087 [SCOI2005]互不侵犯King 状态压缩dp

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descripti ...

  10. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

随机推荐

  1. 基于vue 2.X和高德地图的vue-amap组件获取经纬度

    今天我就讲了一下怎么通过vue和高德地图开发的vue-amap组件来获取经纬度. 这是vue-amap的官网文档:https://elemefe.github.io/vue-amap/#/ 这是我的码 ...

  2. serial console

    适用于: agent_ipmitool_socat pxe_ipmitool_socat 修改driver方式:更换ironic node的driver类型 yum install -y socat ...

  3. NodeJs03 express框架 Todo商城

    前言 由于NodeJs本身的异步非阻塞特性和对http的天然支持,所以使用NodeJs编写高性能,可伸缩的Web服务器非常简单.开发完整的Web服务器还需要路由,错误处理,请求拦截,请求和响应的解析, ...

  4. Python3基本语法

    #编码 ''' 默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串. 当然你也可以为源码文件指定不同的编码: # -*- coding: cp-1252 ...

  5. SQL 唯一标识 写法

    创建唯一标识的方法~16位唯一标识 SELECT LTRIM(STR(CONVERT(varchar(100), GETDATE(), 112)))+right(cast(power(10,6) as ...

  6. NBUT校赛 J Alex’s Foolish Function(分块+延迟标记)

    Problem J: Alex’s Foolish Function Time Limit: 8 Sec  Memory Limit: 128 MB Submit: 18  Solved: 2 Des ...

  7. 【普通の惨败】GDOI2015卖萌记

    前记:这次可真的全程卖萌了.... Day 0 早早坐上前往广州的火车,然后转车到韶关 然后就到了偏远郊区的(准)四星酒店 周围连路灯都没有,极其僻静极其荒凉 大家都极其安静地回到自己房间复习 这一天 ...

  8. 使AD域控服务器Administrator的密码永不过期方法。

    在安装完AD域后,管理员密码会42天就要更新一次,这样对测试比较不方便, 如果要让域控管理员账号密码永远不过期,就照着下面的方法执行: open a Command Prompt as the adm ...

  9. Python之多线程:线程互斥与线程同步

    一.锁在多线程中的使用:线程互斥 lock = threading.Lock()#创建一个锁对象 1.with lock: pass 和进程使用的方式相同   2.控制线程结束的时间 通过一个全局变量 ...

  10. 【bzoj3211】花神游历各国&&【bzoj3038】上帝造题的七分钟2

    bzoj3038]上帝造题的七分钟2 Description XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. “第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟, ...