传送门

分析

考场上傻了,写了个树剖还莫名weila......

实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下。对于每一个a[i]的答案就是之前走过的所有边的数量*2-它自己的深度。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int col[],sum,fa[],dep[];
vector<int>v[];
inline void dfs(int x){
for(int i=;i<v[x].size();i++)
if(v[x][i]!=fa[x]){
fa[v[x][i]]=x;
dep[v[x][i]]=dep[x]+;
dfs(v[x][i]);
}
return;
}
int main(){
int n,m,i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
fa[]=;
dep[]=;
dfs();
col[]=;
for(i=;i<=m;i++){
int x,y;
scanf("%d",&x);
y=x;
while(!col[y]){
col[y]=;
sum++;
y=fa[y];
}
printf("%d\n",sum*-dep[x]);
}
return ;
}

ZROI2018提高day5t2的更多相关文章

  1. ZROI2018提高day9t1

    传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...

  2. ZROI2018提高day6t2

    传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...

  3. ZROI2018提高day6t1

    传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...

  4. ZROI2018提高day5t3

    传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...

  5. ZROI2018提高day5t1

    传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...

  6. ZROI2018提高day4t3

    传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...

  7. ZROI2018提高day4t2

    传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...

  8. ZROI2018提高day4t1

    传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...

  9. ZROI2018提高day3t3

    传送门 分析 我们对于每一个可以匹配的字符都将其从栈中弹出,然后他的哈希值就是现在栈中的字符哈希一下.然后我们便可以求出对于哪些位置它们的哈希值是一样的,即它们的状态是一致的.而这些点可以求出它们的贡 ...

随机推荐

  1. Nhibernate系列学习之(五) 存储过程

    NHibernate也是能够操作存储过程的,不过第一次配置可能会碰到很多错误. 一.删除 首先,我们新建一个存储过程如下: CREATE PROC DeletePerson @Id int AS DE ...

  2. 剑指offer-7.旋转数组的最小数字

    看起来不需要用二分法查找 --------------------------------------------------------- 时间限制:3秒 空间限制:32768K 热度指数:5098 ...

  3. http请求 详解

  4. main函数的参数的用法

    说明:main函数的参数的用法源代码: #include <stdio.h>#include <stdlib.h>int main(int argc, char *argv[] ...

  5. [ZOJ2587]Unique Attack

    vjudge sol 最小割判定唯一性. 只要做完一个任意最小割后,判断一下是不是所有点都要么和\(S\)相连,要么和\(T\)相连. 只要两边各一次\(dfs\)就行了. code #include ...

  6. 【LeetCode】008. String to Integer (atoi)

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

  7. C#检查网络是否可以连接互联网

    添加引用: using System.Runtime.InteropServices; using System.Net.NetworkInformation; [DllImport("wi ...

  8. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

  9. GWT更改元素样式属性

    GWT有时候不像普通网页那样可以自由的添加CSS改变样式,所幸gwt提供了一些底层的方法,通过这些方法来实现DOM操作等.通过gwt部件的getElement()可以取得dom上的元素,这时就能对该元 ...

  10. [转载]Linux C 字符串函数 sprintf()、snprintf() 详解

    一.sprintf() 函数详解 在将各种类 型的数据构造成字符串时,sprintf 的强大功能很少会让你失望. 由于 sprintf 跟 printf 在用法上几乎一样,只是打印的目的地不同而已,前 ...