ZROI2018提高day5t2
分析
考场上傻了,写了个树剖还莫名weila......
实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下。对于每一个a[i]的答案就是之前走过的所有边的数量*2-它自己的深度。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int col[],sum,fa[],dep[];
vector<int>v[];
inline void dfs(int x){
for(int i=;i<v[x].size();i++)
if(v[x][i]!=fa[x]){
fa[v[x][i]]=x;
dep[v[x][i]]=dep[x]+;
dfs(v[x][i]);
}
return;
}
int main(){
int n,m,i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
fa[]=;
dep[]=;
dfs();
col[]=;
for(i=;i<=m;i++){
int x,y;
scanf("%d",&x);
y=x;
while(!col[y]){
col[y]=;
sum++;
y=fa[y];
}
printf("%d\n",sum*-dep[x]);
}
return ;
}
ZROI2018提高day5t2的更多相关文章
- ZROI2018提高day9t1
传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...
- ZROI2018提高day6t2
传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...
- ZROI2018提高day6t1
传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...
- ZROI2018提高day5t3
传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...
- ZROI2018提高day5t1
传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...
- ZROI2018提高day4t3
传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...
- ZROI2018提高day4t2
传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...
- ZROI2018提高day4t1
传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...
- ZROI2018提高day3t3
传送门 分析 我们对于每一个可以匹配的字符都将其从栈中弹出,然后他的哈希值就是现在栈中的字符哈希一下.然后我们便可以求出对于哪些位置它们的哈希值是一样的,即它们的状态是一致的.而这些点可以求出它们的贡 ...
随机推荐
- mac下用brew安装mongodb
分享到:QQ空间新浪微博腾讯微博人人网微信 mac 下安装mongoDB一般俩种方法. (1)下载源码,解压,编译,配置,启动 比较艰难的一种模式. (2)brew install mongodb , ...
- hdoj-1004-Let the Balloon Rise(map排序)
map按照value排序 #include <iostream> #include <algorithm> #include <cstring> #include ...
- uva1152 - 4 Values whose Sum is 0(枚举,中途相遇法)
用中途相遇法的思想来解题.分别枚举两边,和直接暴力枚举四个数组比可以降低时间复杂度. 这里用到一个很实用的技巧: 求长度为n的有序数组a中的数k的个数num? num=upper_bound(a,a+ ...
- ICE的Glacier2使用
1.使用Glacier2的步骤: A.编写一个Glacier2的配置文件,参见样例 B.设置Glacier2的访问鉴权(密码或者证书),passwords文件每行样例"test xx ...
- 3.18 CCProgressTo 进度计时器
CCProgressTimer * pross = CCProgressTimer::create(CCSprite::create("Icon.png")); pross-> ...
- NOI 模拟赛 #3
打开题一看,咦,两道数数,一道猫式树题 感觉树题不可做呀,暴力走人 数数题数哪个呢?感觉置换比矩阵好一些 于是数了数第一题 100 + 0 + 15 = 115 T1 bishop 给若干个环,这些环 ...
- SSL/TLS捕包分析
一.基本概念 SSL:(Secure Socket Layer,安全套接字层),位于可靠的面向连接的网络层协议和应用层协议之间的一种协议层.SSL通过互相认证.使用数字签名确保完整性.使用加密确保私密 ...
- django模型models.py文件内容理解
首先,要理解这句话:模型是你的数据的唯一的.权威的信息源.它包含你所存储数据的必要字段和行为.通常,每个模型对应数据库中唯一的一张表 基础:每个模型都是django.db.models.Model的一 ...
- [ Laravel 5.5 文档 ] 数据库操作 —— 在 Laravel 中轻松实现分页功能
 简介 在其他框架中,分页是件非常痛苦的事,Laravel 让这件事变得简单易于上手.Laravel 的分页器与查询构建器和 Eloquent ORM 集成在一起,并开箱提供方便的.易于使用的.基于 ...
- jsp有哪些动作?作用分别是什么?
jsp共有6种基本动作: 1.jsp:include,在页面被请求的时候引入一个文件 2.jsp:useBean,寻找或者实例化一个JavaBean 3.jsp:setProperty,设置JavaB ...