@description - translation@

给定一个 n*n 的棋盘,并划定一些不能放棋子的矩形区域。

现在要在棋盘上放最多的车(读作 ju),使得这些车两两之间不会攻击。

input

第一行整数 n ——棋盘边长(1 <= n <= 10000)。

第二行整数 q ——划定的矩形个数(0 <= q <= 10000)。

接下来 q 行,每一行都是 x1, y1, x2, y2(1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n),描述矩阵的左下角与右上角。

保证矩形两两不会相交

output

输出最多的车的个数。

sample input

5

5

1 1 2 1

1 3 1 5

4 1 5 5

2 5 2 5

3 2 3 5

sample output

3

sapmle explain

如图。

@solution@

一道网络流题。

一道建模极其简单,建图极其恶心的网络流题。

@part - 1@

考虑建模。棋盘是一个很经典的二分图,可以是黑白染色建模,也可以是行列建模。考虑到车的攻击方式是同行同列攻击,所以我们选择后者。

假如某一个格子(i, j)没有被划定不能放车,我们就第 i 行与第 j 列连边。再跑一个最大匹配就可以求出最多放置多少车了。

然而显然是会 TLE 的,而且还会 T 的很惨,惨兮兮。

@part - 2@

优化建图的话,因为划定的是规则的矩形,所以我们考虑用线段树来优化建图。

如图是一个内部完全没有限制的矩形,我们用行、列两棵线段树将它的两个横竖的边界拆成log n条线段树上的线段:

然后横着的和竖着的两两连边,连 log^2 n 条边【图片略鬼畜】:



这样就处理完了一个没有限制的矩形。

最后:两棵线段树的底层端点,一棵连 S,一棵连 T,容量都为 1。线段树内部的父子连容量为 inf 的边。

@part - 3@

然而问题又来了:我们给定的是限制的矩形区域。

所以,我们必须把原棋盘切割成若干个内部没有限制的矩形,才能运用上面所提到的优化。

怎么切?下面是一个比较显然的思路:



即对于每一个矩形,它的上下左右边界往两边割。

然而,如果下面这个图……



直接卡成 O(n^2)。

我们发现上面的那种切割方法,有很多小矩形是可以合并成大矩形。所以我们优化一下切割方法:



即上下边界往两边切,遇到其他矩形的边界或棋盘的边界,则停下来。

这样切,可以证明最多只会分出 4*n 个矩形。

怎么证明呢?【感性理解】每一个矩形的上下边界向左右各引一条线,一共 4 条线,每条线可以把一个矩形切割成两个矩形,相当于多增加了 4 个矩形。所以最多 4n 个矩形。

@part - 4@

OK 现在来看看怎么实现切割。

我们用扫描线算法,从左往右扫描。对于每一行,维护扫描线左边距离扫描线最近的矩形边界。如图,我们维护的就是左边的那弯弯曲曲的曲线:



假如遇到矩形左边界,我们就从这个矩形的上边界开始往下暴力遍历(对你没听错就是暴力遍历,这样的确是 O(n^2) 的,但是其实 n 不大,对吧)。假如遇到不平坦的地方(对应到代码中就是相邻两行维护的东西不相等),则说明又产生了新的矩形。我们就进行线段树建图。

假如遇到矩形右边界,更新 “扫描线左边距离扫描线最近的矩形边界”。

注意,这个算法是基于矩阵不相交的前提的。

@accepted code@

口胡完毕。至于代码量,我不清楚我不知道,大家自己慢慢调,总会调出来的 qwq。

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN = 10000;
const int MAXM = 100000;
const int MAXK = 2000000;
const int INF = (1<<30);
struct FlowGraph{
struct edge{
int to, cap, flow;
edge *nxt, *rev;
}edges[2*MAXK + 5], *adj[MAXM + 5], *ecnt=&edges[0];
int S, T, d[MAXM + 5], vd[MAXM + 5];
void addedge(int u, int v, int c) {
edge *p = (++ecnt);
p->to = v, p->cap = c, p->flow = 0;
p->nxt = adj[u], adj[u] = p;
edge *q = (++ecnt);
q->to = u, q->cap = 0, q->flow = 0;
q->nxt = adj[v], adj[v] = q;
p->rev = q, q->rev = p;
}
int aug(int x, int tot) {
if( x == T ) return tot;
int mind = T+1, sum = 0;
for(edge *p=adj[x];p!=NULL;p=p->nxt) {
if( p->cap > p->flow ) {
if( d[p->to] + 1 == d[x] ) {
int del = aug(p->to, min(tot-sum, p->cap-p->flow));
p->flow += del, p->rev->flow -= del, sum += del;
if( d[S] == T+1 ) return sum;
if( sum == tot ) return sum;
}
mind = min(mind, d[p->to]);
}
}
if( sum == 0 ) {
vd[d[x]]--;
if( vd[d[x]] == 0 )
d[S] = T+1;
d[x] = mind + 1;
vd[d[x]]++;
}
return sum;
}
int max_flow() {
int flow = 0;
while( d[S] < T+1 )
flow += aug(S, INF);
return flow;
}
}G;
int cnt = 0;
struct SegmentTree{
int le, ri, num;
}t[2][4*MAXN + 5];
vector<int>v[2];
void build_segtree(int x, int l, int r, int n) {
t[n][x].le = l, t[n][x].ri = r, t[n][x].num = (++cnt);
if( l == r ) return ;
int mid = (l + r) >> 1;
build_segtree(x<<1, l, mid, n);
build_segtree(x<<1|1, mid+1, r, n);
}
void build_edge_segtree(int x, int n) {
if( t[n][x].le == t[n][x].ri ) {
if( n == 0 ) G.addedge(G.S, t[n][x].num, 1);
else G.addedge(t[n][x].num, G.T, 1);
}
else {
if( n == 0 ) {
G.addedge(t[n][x<<1].num, t[n][x].num, INF);
G.addedge(t[n][x<<1|1].num, t[n][x].num, INF);
}
else {
G.addedge(t[n][x].num, t[n][x<<1].num, INF);
G.addedge(t[n][x].num, t[n][x<<1|1].num, INF);
}
build_edge_segtree(x<<1, n);
build_edge_segtree(x<<1|1, n);
}
}
void get_segment(int x, int l, int r, int n) {
if( l <= t[n][x].le && t[n][x].ri <= r ) {
v[n].push_back(t[n][x].num);
return ;
}
if( l > t[n][x].ri || r < t[n][x].le )
return ;
get_segment(x<<1, l, r, n);
get_segment(x<<1|1, l, r, n);
}
void build_edge_area(int x1, int y1, int x2, int y2) {
if( x1 > x2 || y1 > y2 ) return ;
v[0].clear(), v[1].clear();
get_segment(1, x1, x2, 0);
get_segment(1, y1, y2, 1);
for(int i=0;i<v[0].size();i++)
for(int j=0;j<v[1].size();j++)
G.addedge(v[0][i], v[1][j], INF);
}
struct node{
int le, ri;
node(int _l=0, int _r=0):le(_l), ri(_r){}
};
vector<node>vec[MAXN + 5][2];
int left[MAXN + 5];
int main() {
int n, q;
scanf("%d%d", &n, &q);
build_segtree(1, 1, n, 0); build_segtree(1, 1, n, 1); G.T = cnt + 1;
build_edge_segtree(1, 0); build_edge_segtree(1, 1);
for(int i=1;i<=q;i++) {
int x1, y1, x2, y2;
scanf("%d%d%d%d", &y1, &x1, &y2, &x2);
vec[x1][0].push_back(node(y1, y2));
vec[x2][1].push_back(node(y1, y2));
}
vec[n+1][0].push_back(node(1, n));
for(int i=1;i<=n+1;i++) {
for(int j=0;j<vec[i][0].size();j++) {
int lst = vec[i][0][j].le;
for(int k=vec[i][0][j].le+1;k<=vec[i][0][j].ri;k++)
if( left[k] != left[k-1] )
build_edge_area(left[k-1]+1, lst, i-1, k-1), lst = k;
build_edge_area(left[vec[i][0][j].ri]+1, lst, i-1, vec[i][0][j].ri);
}
for(int j=0;j<vec[i][1].size();j++)
for(int k=vec[i][1][j].le;k<=vec[i][1][j].ri;k++)
left[k] = i;
}
//注意我们必须要先处理矩形的左边再处理矩形的右边,不然遇到宽度为 1 的矩形就直接 GG 了。
int ans = G.max_flow();
printf("%d\n", ans);
}

@details@

一开始我写的从上往下的扫描线,结果发现 TLE 在 144th 组数据上。

气的我一怒之下把扫描线改成从左往右的。

然后……它就 AC 了???

听说机房里的另外一个人遇到了一样的情况,然后他把 isap 换成了 dinic 才过的。

好玄妙啊,果然是网络流。

@codeforces - 793G@ Oleg and chess的更多相关文章

  1. 【Codeforces】【网络流】【线段树】【扫描线】Oleg and chess (CodeForces - 793G)

    题意: 给定一个n*n的矩阵,一个格子上可以放一个车.其中有q个子矩阵,且q个子矩阵互不相交或者是重叠(但边界可以衔接).这q个子矩阵所覆盖的地方都是不能够放车的.车可以越过子矩阵覆盖的地方进行攻击( ...

  2. Solution -「CF 793G」Oleg and Chess

    \(\mathcal{Description}\)   Link.   给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车.   ...

  3. Codeforces 734D. Anton and Chess(模拟)

    Anton likes to play chess. Also, he likes to do programming. That is why he decided to write the pro ...

  4. Codeforces 1173B Nauuo and Chess

    题目链接:http://codeforces.com/problemset/problem/1173/B 思路参考:https://www.cnblogs.com/blowhail/p/1099123 ...

  5. 【Codeforces】【网络流】【树链剖分】【线段树】ALT (CodeForces - 786E)

    题意 现在有m个人,每一个人都特别喜欢狗.另外还有一棵n个节点的树. 现在每个人都想要从树上的某个节点走到另外一个节点,且满足要么这个人自带一条狗m,要么他经过的所有边h上都有一条狗. 2<=n ...

  6. Gym100947E || codeforces 559c 组合数取模

    E - Qwerty78 Trip Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  7. codeforces613E

    Puzzle Lover CodeForces - 613E Oleg Petrov loves crossword puzzles and every Thursday he buys his fa ...

  8. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  9. Codeforces Round #379 (Div. 2) D. Anton and Chess 水题

    D. Anton and Chess 题目连接: http://codeforces.com/contest/734/problem/D Description Anton likes to play ...

随机推荐

  1. django中的聚合索引

    Django(元信息)元类建索引 ORM查询(sql优化)优化 自定义聚合函数 Django的元类建索引————索引:索引的一个主要目的就是加快检索表中数据,索引是经过某种算法优化过的,因而查找次数要 ...

  2. Python基础-列表、元组、字典、字符串

    Python基础-列表.元组.字典.字符串   多维数组 nums1 = [1,2,3] #一维数组 nums2 = [1,2,3,[4,56]] #二维数组 nums3 = [1,2,3,4,['a ...

  3. MacBook下为要运行的.net core 项目指定sdk版本

    安装完.net core 3.0,运行早期版本构建的项目遇到运行错误,查阅官方文档解决问题,特此记录!官方原文如下: SDK 使用最新安装的版本 SDK 命令包括 dotnet new 和 dotne ...

  4. 未压缩的jQuery

    /*! * jQuery JavaScript Library v3.4.1 * https://jquery.com/ * * Includes Sizzle.js * https://sizzle ...

  5. python 随机模块random

  6. mybatis中实现一对一,一对多查询

    在实际的开发中我们经常用到的是一对一查询和一对多查询.而多对多的实现是通过中间来实现,这里就没有给出来了 比如: 订单和用户是一对一的关系(一个订单只能对应一个用户) 订单和订单明细是一对多的关系(一 ...

  7. NoSQL最新现状和趋势:云NoSQL数据库将成重要增长引擎

    NoSQL最早起源于1998年,但从2009年开始,NoSQL真正开始逐渐兴起和发展.回望历史应该说NoSQL数据库的兴起,完全是十年来伴随互联网技术,大数据数据的兴起和发展,NoSQL在面临大数据场 ...

  8. javascript函数式编程和链式优化

    1.函数式编程理解 函数式编程可以理解为,以函数作为主要载体的编程方式,用函数去拆解.抽象一般的表达式 与命令式相比,这样做的好处在哪?主要有以下几点: (1)语义更加清晰 (2)可复用性更高 (3) ...

  9. OpenLayers使用弹出窗口

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  10. 数据库---JDBC的解析

    一.JDBC是什么? JDBC:Java Database Connectivity(Java数据库连接池).指定了统一的访问各种关系型数据库的标准接口-----桥梁作用.  功能:[与数据库建立连接 ...