这个题其实也是很简单的莫队,题目要求是给一个序列,询问l-r区间内部,找到有多少对答案满足 i < j 并且

| a[ i ] -a[ j ] | <=k 也就是有多少对,满足差值小于k的个数。

把这个式子展开,其实就是-k<= a[ i ] -a [ j ] <= k 也就是  a[ j ] -k <= a[ i ] <= a[ j ] + k,也就是说,对于某个 j 位置,我们需要在询问的区间内,找到 i < j 并且在[ a[j] -k ,a[j] +k ] 范围中的数的个数,这个其实可以通过树状数组区间查询即可。

但是对于k来说,太大了,树状数组也开不下,所以我们要进行离散化,把a[i],a[i]+k,a[i]-k位置存下来即可(老套路了)保证每个位置都能找得到,然后区间查询即可,然后每次算贡献即可。

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxx = 2e5+;
int block;
int a[maxx];
std::vector<int>vx;
int sum[maxx];
int ans[maxx];
int num;
int n,m,k;
struct node{
int l,r;
int id;
friend bool operator < (const node &a,const node &b){
if(a.l/block==b.l/block){
return a.r<b.r;
}
return a.l/block<b.l/block;
}
}q[maxx];
int low[maxx];
int up[maxx];
int p[maxx];
int lowbit(int x){
return x&(-x);
}
void add(int x,int w){
for(int i=x;i<=*n;i+=lowbit(i)){
sum[i]+=w;
}
return ;
}
int getsum(int x){
int s=;
for(int i=x;i;i-=lowbit(i)){
s+=sum[i];
}
return s;
}
void add(int x){
num+=getsum(up[x])-getsum(low[x]-);
add(p[x],);
}
void del(int x){
add(p[x],-);
num-=getsum(up[x])-getsum(low[x]-);
}
int main(){
while(~scanf("%d%d%d",&n,&m,&k)){
block=sqrt(n);
memset(sum,,sizeof(sum));
memset(ans,,sizeof(ans));
vx.clear();
///绝对值小于等于K
for (int i=;i<=n;i++){
scanf("%d",&a[i]);
vx.push_back(a[i]);
vx.push_back(a[i]+k);
vx.push_back(a[i]-k);
}
num=;
sort(vx.begin(),vx.end());
vx.erase(unique(vx.begin(),vx.end()),vx.end());
int sz=vx.size();
for(int i=;i<=n;i++){
p[i]=lower_bound(vx.begin(),vx.end(),a[i])-vx.begin()+;
low[i]=lower_bound(vx.begin(),vx.end(),a[i]-k)-vx.begin()+;
up[i]=lower_bound(vx.begin(),vx.end(),a[i]+k)-vx.begin()+;
}
for(int i=;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q+,q++m);
int l=,r=;
num=;
for(int i=;i<=m;i++){
while(l<q[i].l)del(l),l++;
// cout<<num<<" ";
while(l>q[i].l)l--,add(l);
// cout<<num<<" ";
while(r<q[i].r)r++,add(r);
// cout<<num<<" ";
while(r>q[i].r)del(r),r--;
// cout<<num<<" "<<endl;
ans[q[i].id]=num;
}
for(int i=;i<=m;i++){
printf("%d\n",ans[i]);
}
}
return ;
}

HDU - 6534 Chika and Friendly Pairs的更多相关文章

  1. HDU6534 Chika and Friendly Pairs(莫队,树状数组)

    HDU6534 Chika and Friendly Pairs 莫队,树状数组的简单题 #include<bits/stdc++.h> using namespace std; cons ...

  2. 201⑨湘潭邀请赛 Chika and Friendly Pairs(HDU6534)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=6534 题意: 给你一个数组,对于第i个数来说,如果存在一个位置j,使得j>i并且a[j]-k&l ...

  3. HDU-6534-Chika and Friendly Pairs (莫队算法,树状数组,离散化)

    链接: https://vjudge.net/contest/308446#problem/C 题意: Chika gives you an integer sequence a1,a2,-,an a ...

  4. HDU 6534 莫队+ 树状数组

    题意及思路:https://blog.csdn.net/tianyizhicheng/article/details/90369491 代码: #include <bits/stdc++.h&g ...

  5. 2019 CCPC 湖南全国邀请赛

    A. Chessboard 做法1 单纯形. 做法2 最大费用可行流问题,行列模型. 对每行建一个点,每列建一个点.物品 \(i\) 在 \((r,c)\),那么 \(r\) 向 \(c\) 连流量为 ...

  6. AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  7. AtCoderBeginner091-C 2D Plane 2N Points 模拟问题

    题目链接:https://abc091.contest.atcoder.jp/tasks/arc092_a 题意 On a two-dimensional plane, there are N red ...

  8. AtCoder Regular Contest 092 2D Plane 2N Points AtCoder - 3942 (匈牙利算法)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  9. HDU 5178 pairs —— 思维 + 二分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5178 pairs Time Limit: 2000/1000 MS (Java/Others)     ...

随机推荐

  1. python基础--包、logging、hashlib、openpyxl、深浅拷贝

    包:它是一系列模块文件的结合体,表现形式就是一个文件夹,该文件夹内部通常会有一个__init__.py文件,包的本质还是一个模块. 首次导入包:(在导入语句中中 . 号的左边肯定是一个包(文件夹)) ...

  2. 按照in条件排序

    --按照in中条件排序 ,,,) order by instr('395,396,399,313',ghdm);

  3. iOS 动画队列—仿映客刷礼物效果

    http://www.cocoachina.com/ios/20160719/17101.html 最近在研究直播的相关知识,在网上看到了不少优秀的开源项目,但都没有看到映客那个刷礼物的效果,于是手痒 ...

  4. python 处理缺失数据

  5. linux查看现在在运行的进程 $ pstree -a$ ps aux

    这都是查看现有进程的. ps aux 的结果比较杂乱 pstree -a 的结果比较简单明了,可以看到正在运行的进程及相关用户.

  6. POJ2182Lost Cows

    Lost Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11946   Accepted: 7690 Descri ...

  7. 【洛谷】P1590 失踪的7

    P1590 失踪的7 题目描述 远古的Pascal人也使用阿拉伯数字来进行计数,但是他们又不喜欢使用7,因为他们认为7是一个不吉祥的数字,所以Pascal数字8其实表示的是自然数中的7,18表示的是自 ...

  8. ubuntu16安装python3.7

    ####################################################源码安装python,注意shell脚本第一行开头的要求#################### ...

  9. 2019阿里云开年Hi购季云通信分会场全攻略!

    2019阿里云云上Hi购季活动已经于2月25日正式开启,从已开放的活动页面来看,活动分为三个阶段: 2月25日-3月04日的活动报名阶段.3月04日-3月16日的新购满返+5折抢购阶段.3月16日-3 ...

  10. 警告: deleting object of polymorphic class type which has non_virtual destructor

    如果基类里有虚函数,定义了基类指针指向派生类,就会需要定义基类虚析构,这样,基类指针析构的时候,就会先析构派生类,再析构基类. 在用基类指针指向派生类时, 在基类析构函数声明为virtual的时候,d ...