这个题其实也是很简单的莫队,题目要求是给一个序列,询问l-r区间内部,找到有多少对答案满足 i < j 并且

| a[ i ] -a[ j ] | <=k 也就是有多少对,满足差值小于k的个数。

把这个式子展开,其实就是-k<= a[ i ] -a [ j ] <= k 也就是  a[ j ] -k <= a[ i ] <= a[ j ] + k,也就是说,对于某个 j 位置,我们需要在询问的区间内,找到 i < j 并且在[ a[j] -k ,a[j] +k ] 范围中的数的个数,这个其实可以通过树状数组区间查询即可。

但是对于k来说,太大了,树状数组也开不下,所以我们要进行离散化,把a[i],a[i]+k,a[i]-k位置存下来即可(老套路了)保证每个位置都能找得到,然后区间查询即可,然后每次算贡献即可。

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxx = 2e5+;
int block;
int a[maxx];
std::vector<int>vx;
int sum[maxx];
int ans[maxx];
int num;
int n,m,k;
struct node{
int l,r;
int id;
friend bool operator < (const node &a,const node &b){
if(a.l/block==b.l/block){
return a.r<b.r;
}
return a.l/block<b.l/block;
}
}q[maxx];
int low[maxx];
int up[maxx];
int p[maxx];
int lowbit(int x){
return x&(-x);
}
void add(int x,int w){
for(int i=x;i<=*n;i+=lowbit(i)){
sum[i]+=w;
}
return ;
}
int getsum(int x){
int s=;
for(int i=x;i;i-=lowbit(i)){
s+=sum[i];
}
return s;
}
void add(int x){
num+=getsum(up[x])-getsum(low[x]-);
add(p[x],);
}
void del(int x){
add(p[x],-);
num-=getsum(up[x])-getsum(low[x]-);
}
int main(){
while(~scanf("%d%d%d",&n,&m,&k)){
block=sqrt(n);
memset(sum,,sizeof(sum));
memset(ans,,sizeof(ans));
vx.clear();
///绝对值小于等于K
for (int i=;i<=n;i++){
scanf("%d",&a[i]);
vx.push_back(a[i]);
vx.push_back(a[i]+k);
vx.push_back(a[i]-k);
}
num=;
sort(vx.begin(),vx.end());
vx.erase(unique(vx.begin(),vx.end()),vx.end());
int sz=vx.size();
for(int i=;i<=n;i++){
p[i]=lower_bound(vx.begin(),vx.end(),a[i])-vx.begin()+;
low[i]=lower_bound(vx.begin(),vx.end(),a[i]-k)-vx.begin()+;
up[i]=lower_bound(vx.begin(),vx.end(),a[i]+k)-vx.begin()+;
}
for(int i=;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q+,q++m);
int l=,r=;
num=;
for(int i=;i<=m;i++){
while(l<q[i].l)del(l),l++;
// cout<<num<<" ";
while(l>q[i].l)l--,add(l);
// cout<<num<<" ";
while(r<q[i].r)r++,add(r);
// cout<<num<<" ";
while(r>q[i].r)del(r),r--;
// cout<<num<<" "<<endl;
ans[q[i].id]=num;
}
for(int i=;i<=m;i++){
printf("%d\n",ans[i]);
}
}
return ;
}

HDU - 6534 Chika and Friendly Pairs的更多相关文章

  1. HDU6534 Chika and Friendly Pairs(莫队,树状数组)

    HDU6534 Chika and Friendly Pairs 莫队,树状数组的简单题 #include<bits/stdc++.h> using namespace std; cons ...

  2. 201⑨湘潭邀请赛 Chika and Friendly Pairs(HDU6534)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=6534 题意: 给你一个数组,对于第i个数来说,如果存在一个位置j,使得j>i并且a[j]-k&l ...

  3. HDU-6534-Chika and Friendly Pairs (莫队算法,树状数组,离散化)

    链接: https://vjudge.net/contest/308446#problem/C 题意: Chika gives you an integer sequence a1,a2,-,an a ...

  4. HDU 6534 莫队+ 树状数组

    题意及思路:https://blog.csdn.net/tianyizhicheng/article/details/90369491 代码: #include <bits/stdc++.h&g ...

  5. 2019 CCPC 湖南全国邀请赛

    A. Chessboard 做法1 单纯形. 做法2 最大费用可行流问题,行列模型. 对每行建一个点,每列建一个点.物品 \(i\) 在 \((r,c)\),那么 \(r\) 向 \(c\) 连流量为 ...

  6. AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  7. AtCoderBeginner091-C 2D Plane 2N Points 模拟问题

    题目链接:https://abc091.contest.atcoder.jp/tasks/arc092_a 题意 On a two-dimensional plane, there are N red ...

  8. AtCoder Regular Contest 092 2D Plane 2N Points AtCoder - 3942 (匈牙利算法)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  9. HDU 5178 pairs —— 思维 + 二分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5178 pairs Time Limit: 2000/1000 MS (Java/Others)     ...

随机推荐

  1. MYSQL基础常识

    所有的数据库名.表名.表字段都是区分大小写的.所以在使用mysql命令时需要输入正确的名称 MYSQL命令终止符是分号; 1.MYSQL的连接:mysql -u root -p(\q或exit退出); ...

  2. Oracle 优化效率

    一.链接: ORACLE多表查询优化 oracle的 分表 详解 -----表分区 Oracle数据库查询优化方案(处理上百万级记录如何提高处理查询速度) 数据库SQL优化大总结之 百万级数据库优化方 ...

  3. tcpdump概述

    tcpdump是一个用于截取网络分组,并输出分组内容的工具.tcpdump凭借强大的功能和灵活的截取策略,使其成为类UNIX系统下用于网络分析和问题排查的首选工具. tcpdump提供了源代码,公开了 ...

  4. 微服务开源生态报告 No.8

    「微服务开源生态报告」,汇集各个开源项目近期的社区动态,帮助开发者们更高效的了解到各开源项目的最新进展. 社区动态包括,但不限于:版本发布.人员动态.项目动态和规划.培训和活动. 非常欢迎国内其他微服 ...

  5. 助力深度学习!阿里开源可插拔 GPU 共享调度工具

    根据 Gartner 对全球 CIO 的调查结果显示,人工智能将成为 2019 年组织革命的颠覆性力量.对于人工智能来说,算力即正义,成本即能力,利用 Docker 和 Kubernetes 代表云原 ...

  6. LUOGU 3089 后缀排序(模板)

    传送门 解题思路 这是一个神奇的算法,sa[i]表示排名第i为的元素是啥,rk[i]表示第i个元素排名是啥.然后使用基数排序+倍增的思想去处理.主要是参考的这位大佬的博客(https://www.cn ...

  7. 关于在eclipse中安装各种插件的问题

    在eclipse中安装php插件的方法 参考转载链接:eclipse 安装php插件 并配置环境 elipse的php插件地址:https://www.eclipse.org/pdt/ 以下可能会用到 ...

  8. 移动端h5禁用浏览器左滑右滑的前进后退功能

    在项目运行过程中发现,用户在有左右滑动前进后退的功能的浏览器上签字时,偶然触发了前进后退会导致canvas像是重置了一样内容消失,所以需要在代码中处理这种情况. 基本原理就是在touchmove事件中 ...

  9. python pattern 类

  10. PyCharm使用之利用Docker镜像搭建Python开发环境

      在我们平时使用PyCharm的过程中,一般都是连接本地的Python环境进行开发,但是如果是离线的环境呢?这样就不好搭建Python开发环境,因为第三方模块的依赖复杂,不好通过离线安装包的方式安装 ...