题意:

已知

$x+y$ $mod$ $q = b$

$x*y$ $mod$ $q = c$

已知b和c,求x和y

题解:

容易想到$b^2-4c=x^2-2xy+y^2=(x-y)^2$

那么开个根号就能得到x-y,很容易就得出x和y了

在模q意义下对k开根号的方法就是找到w,使得$w*w$ $mod$ $q=k$

考虑模数q为奇质数的情况,可以用Tonelli-Shanks算法求解,这是一个概率算法,但是一般而言得出正确解的概率非常高,遇到类似问题套版即可。

#include<iostream>
#include<cmath>
#define MOD 1000000007
#define LL long long
using namespace std;
LL qpow(LL x,LL y,LL m){
//cal x^y%m
LL re = ;
while(y){
if(y & )//判断n的最后一位是否为1
re = (re * x) % m;
y >>= ;//舍去n的最后一位
x = (x * x) % m;//将a平方
}
return re % m;
}
class ModSqrt{
public:
LL power(LL x,LL y,LL m){
//cal x^y%m
LL re = ;
while(y){
if(y & )//判断n的最后一位是否为1
re = (re * x) % m;
y >>= ;//舍去n的最后一位
x = (x * x) % m;//将a平方
}
return re % m;
} LL normal_power(LL a,LL b){
LL re = ;
while(b){
if(b & )//判断n的最后一位是否为1
re = (re * a);
b>>= ;//舍去n的最后一位
a = (a * a);//将a平方
}
return re;
} LL inverse(LL a,LL m){
return power(a,m-,m);
} LL getn(LL p){
for(LL i=;i<p;i++){
if(power(i,(p-)/,p)==p-)
return i;
}
return -;
} int solve(LL a,LL p){ if(a==)return ;
if(power(a,(p-)/,p)==p-){
return -;
}
while(a<)a+=p;
while(a>p)a-=p;
LL n=getn(p);
bool finish=false;
LL t=;
LL s=p-;
while(!finish){
s=s/;
if(s%) finish=true;
else t+=;
}
LL b=power(n,s,p);
LL _a=inverse(a,p);
LL x[];
for(LL i=;i<;i++)x[i]=;
x[t-]=power(a,(s+)/,p);
for(LL i=;i<=t-;i++){
LL judge=power((_a*x[t-i]*x[t-i])%p,normal_power(,t-i-),p);
if(judge==){
x[t-i-]=x[t-i];
}else if(judge==p-){
x[t-i-]=(power(b,normal_power(,i-),p)*x[t-i])%p;
}
}
return x[]; }
}modsqrt;
int main(){
int t;
scanf("%d",&t);
while(t--){
LL b,c;
scanf("%lld %lld",&b,&c);
LL q=b*b%MOD-*c%MOD;
q=(q+MOD)%MOD;
LL sq=modsqrt.solve(q,MOD);
if(sq==-)printf("-1 -1\n");
else{
LL xx=sq+b;
LL yy=(b-sq+MOD)%MOD;
LL x=xx*qpow(,MOD-,MOD)%MOD;
LL y=yy*qpow(,MOD-,MOD)%MOD;
if(x>y)swap(x,y);
printf("%lld %lld\n",x,y);
}
}
return ;
}

牛客多校第九场 B Quadratic equation 模平方根的更多相关文章

  1. 2019牛客多校第九场B Quadratic equation(二次剩余定理)题解

    题意: 传送门 已知\(0 <= x <= y < p, p = 1e9 + 7\)且有 \((x+y) = b\mod p\) \((x\times y)=c\mod p\) 求解 ...

  2. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

  3. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  4. 2018牛客多校第九场E(动态规划,思维,取模)

    #include<bits/stdc++.h>using namespace std;const long long mod=1000000007,inv=570000004;long l ...

  5. 2019牛客多校第九场AThe power of Fibonacci——扩展BM

    题意 求斐波那契数列m次方的前n项和,模数为 $1e9$. 分析 线性递推乘线性递推仍是线性递推,所以上BM. 由于模数非质数,上扩展版的BM. 递推多少项呢?本地输入发现最大为与前57项有关(而且好 ...

  6. 牛客多校第九场 J Symmetrical Painting 计算几何/扫描线

    题意: 平面上有几个宽度相同的矩形区域被涂黑了,让你找到一条横线横截若干个矩形,把这些黑色部分抠下来一部分使得它们以这条横线为对称轴,求能抠下来的最大面积. 题解: 在随着对称轴上移的过程中,必然有一 ...

  7. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

  8. 牛客多校第九场 E All men are brothers 并查集/组合论

    题意: 一开始有n人互不认识,每回合有两个人认识,认识具有传递性,也就是相互认识的人组成小团体.现在问你每个回合,挑选四个人,这四个人互不认识,有多少种挑选方法. 题解: 认识不认识用并查集维护即可, ...

  9. 牛客多校第九场 D Knapsack Cryptosystem 背包

    题意: 给你32个物品,给定一个容积,让你恰好把这个背包装满,求出装满的方案 题解: 暴力计算的话,复杂度$2^{32}$肯定会炸,考虑一种类似bsgs的算法,先用$2^{16}$的时间遍历前一半物品 ...

随机推荐

  1. ecshop前台英文后台中文的设置方法

    ecshop前台英文后台中文的设置方法 这里有两种方法: 第一种方法: 打开 admin/includes/init.php 文件 找到$_CFG = load_config(); 在它下面增加一行代 ...

  2. Dart编程实例 - 类型测试操作符 is!

    Dart编程实例 - 类型测试操作符 is! void main() { double n = 2.20; var num = n is! int; print(num); } 本文转自:http:/ ...

  3. 【Flutter学习】基本组件之基本网格Gradview组件

    一,概述 数据量很大的时用矩阵方式排列比较清晰,此时用网格列表组件,即为GridView组件,可实现多行多列的应用场景. 使用GridView创建网格列表有多种方式: GridView.count 通 ...

  4. es6学习笔记--箭头函数

    基本用法 ES6允许使用“箭头”(=>)定义函数. var f = v => v; 上面的箭头函数等同于: var f = function(v) { return v; }; 如果箭头函 ...

  5. android ellipsize的使用及实现跑马灯效果总结

    参考资料: http://blog.csdn.net/huiwolf2008/article/details/7901084 http://www.cnblogs.com/Gaojiecai/arch ...

  6. PAT_A1095#Cars on Campus

    Source: PAT A1095 Cars on Campus (30 分) Description: Zhejiang University has 8 campuses and a lot of ...

  7. angularJS 绑定操作

    <button type="submit" ng-disabled="editForm.$invalid || vm.isSaving" class=&q ...

  8. vue项目使用js-xlsx进行excel表格的导入和导出方法的简单原型封装

    前提:已经安装好 file-saver xlsx和 script-loader,如未安装,请查看 https://www.cnblogs.com/luyuefeng/p/8031597.html 新建 ...

  9. web前端Vue+Django rest framework 框架 生鲜电商项目实战✍✍✍

    web前端Vue+Django rest framework 框架 生鲜电商项目实战  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频 ...

  10. SVM-SVR

    高频率的接触到了SVM模型,而且还有使用SVM模型做回归的情况,即SVR.另外考虑到自己从第一次知道这个模型到现在也差不多两年时间了,从最开始的腾云驾雾到现在有了一点直观的认识,花费了不少时间.因此在 ...