题面

棋盘类状压 DP 经典题。

我们考虑设 \(dp_{i,j,s}\) 表示前 \(i\) 行已经摆了 \(j\) 个国王,且第 \(i\) 行国王摆放的状态为 \(s\) 的合法方案数。

转移的时候枚举每一行的每种状态及已经摆放了的国王数量,然后枚举上一行的状态,如果合法就更新。

但是这样做的时间复杂度大致是 \(10 \times 10^2 \times 2^{10} \times 10^3 = 10^9\) 的,明显会 TLE,于是我们考虑如何优化。

其实我们在转移时有很多不合法的状态,即转移时的无用状态。于是我们考虑预处理一下所有在转移时合法的状态,这样优化后我们就可以 AC 本题了。

#include <bits/stdc++.h>

using namespace std;

const int maxn = 13, maxm = 1 << 11, maxk = 103;

int n, m, k;
int cnt[maxm]; //存储每个状态中 1 的个数
long long ans, dp[maxn][maxk][maxm];
vector <int> g; //存储合法的状态
vector <int> can[maxm]; //存储每个状态可以转移到的合法状态 //判断一个状态是否合法,即判断是否有连续的 2 个 1
inline bool check(int x)
{
for (int i = 0; i < n; i+=1)
if ((x >> i & 1) && (x >> (i + 1) & 1))
return false;
return true;
} //求一个状态中 1 的个数
inline int get_1(int x)
{
int sum = 0;
for (int i = 0; i < n; i+=1)
if (x >> i & 1)
++sum;
return sum;
} int main()
{
cin >> n >> m;
for (int i = 0; i < (1 << n); i+=1) //枚举所有状态
if (check(i)) //该状态合法
{
g.push_back(i);
cnt[i] = get_1(i);
}
int len = g.size(); //合法状态的个数
for (int i = 0; i < len; i+=1)
for (int j = 0; j < len; j+=1) //枚举每两个合法的状态
{
int a = g[i], b = g[j];
if (!(a & b) && check(a | b))
can[i].push_back(j); //两个状态在转移时可以放相邻两行
}
dp[0][0][0] = 1;
for (int i = 1; i <= n; i+=1) //枚举行数
for (int j = 0; j <= m; j+=1) //枚举国王个数
for (int k = 0; k < len; k+=1) //枚举状态
{
int len1 = can[k].size(), geshu_1 = cnt[g[k]];
for (int ll = 0; ll < len1; ll+=1) //枚举上一行的状态
{
int l = g[can[k][ll]];
if (j >= geshu_1) //可以进行转移
dp[i][j][g[k]] += dp[i - 1][j - geshu_1][l];
}
}
for (int i = 0; i < (1 << n); i+=1) //枚举最后一行的状态
ans += dp[n][m][i]; //统计答案
cout << ans << endl; //输出答案
return 0;
}

题解【洛谷P1896】[SCOI2005]互不侵犯的更多相关文章

  1. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  2. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  3. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  4. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  5. 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. 洛谷 P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  7. 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...

  8. BZOJ1087=Codevs2451=洛谷P1896&P2326互不侵犯

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2885  Solved: 1693[Submit][ ...

  9. 【洛谷P1896】互不侵犯

    题目大意:给定 N*N 的棋盘,一共放 K 个国王,一共有多少种方法. 题解: i&i<<1 判断是否每个 1 的位置之间都有 0. i&j<<1 判断 i 中 ...

  10. P1896 [SCOI2005] 互不侵犯 方法记录

    原题链接 [SCOI2005] 互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

随机推荐

  1. hadoop3自学入门笔记(1)——虚拟机安装和网络配置

    前言 年过30惶惶不安,又逢疫情,还是不断学习,强化自己的能力.hadoop的视频和书籍在15年的时候就看过,但是一直没动手实践过,要知道技术不经过实战,一点提升也没有.因此下定决心边学边做,希望能有 ...

  2. Jenkins集成jacoco收集单元测试覆盖率

    Jenkins集成jacoco收集单元测试覆盖率 2020-02-28 目录 0 整体思路1 Jenkins创建JacocoIntegrateTestDemo项目2 配置源码管理3 配置Build4 ...

  3. (转)elasticsearch collapse 折叠字段应用

    转自:https://elasticsearch.cn/article/132 在 Elasticsearch 5.x 有一个字段折叠(Field Collapsing,#22337)的功能非常有意思 ...

  4. HTML5基础-新增标签+新增属性+布局案例

    html5中常用的结构标签 article 文章 header 头部 nav 导航 section 区域 aside 侧边栏 hgroup 区块的相关信息 figure 定义一组内容及标题 figca ...

  5. C++文件处理(一):读/写txt文件

    C++文件处理与C语言不同,C++文件处理使用的是:流(stream) C++头文件fstream定义了三个类型来支持文件IO

  6. CentOS7安装docker和docker-compose

    1.安装docker # 使用yum安装docker yum -y install docker # 启动 systemctl start docker.service # 设置为开机自启动 syst ...

  7. 剑指offer-面试题54-二叉搜索树的第k大节点-中序遍历

    /* 题目: 求二叉搜索树的第k大节点. */ /* 思路: 中序遍历. */ #include<iostream> #include<cstring> #include< ...

  8. iframe中子父页面跨域通讯

    目录 #跨域发送信息 #跨域接收信息 #示例Demo 在非跨域的情况下,iframe中的子父页面可以很方便的通讯,但是在跨域的情况下,只能通过window.postMessage()方法来向其他页面发 ...

  9. 欢迎来到ZhuSenlin的博客

    置顶说明: 本博客的目的:为了巩固自己所学知识,努力提高自己的专业技能:若文章能够帮助到你,是我莫大的荣幸. 本博客的文章主要涉及的领域为游戏开发(本人不才,也在努力学习中) 随笔主要记录一些琐碎的知 ...

  10. java网页日期选择框对应的星期有误

    · 我用java写了个星期查询代码,有的日期对有的日期错,求帮忙看看哪里有问题!! import java.util.*;public class Test1 {public static void ...