题目描述

A little known fact about Bessie and friends is that they love stair climbing races. A better known fact is that cows really don’t like going down stairs. So after the cows finish racing to the top of their favorite skyscraper, they had a problem. Refusing to climb back down using the stairs, the cows are forced to use the elevator in order to get back to the ground floor.

The elevator has a maximum weight capacity of W (1 <= W <= 100,000,000) pounds and cow i weighs C_i (1 <= C_i <= W) pounds. Please help Bessie figure out how to get all the N (1 <= N <= 18) of the cows to the ground floor using the least number of elevator rides. The sum of the weights of the cows on each elevator ride must be no larger than W.

给出n个物品,体积为w[i],现把其分成若干组,要求每组总体积<=W,问最小分组。(n<=18)

输入输出格式

输入格式:

  • Line 1: N and W separated by a space.

  • Lines 2..1+N: Line i+1 contains the integer C_i, giving the weight of one of the cows.

输出格式:

  • A single integer, R, indicating the minimum number of elevator rides needed.

one of the R trips down the elevator.

输入输出样例

输入样例#1:

4 10

5

6

3

7

输出样例#1:

3

说明

There are four cows weighing 5, 6, 3, and 7 pounds. The elevator has a maximum weight capacity of 10 pounds.

We can put the cow weighing 3 on the same elevator as any other cow but the other three cows are too heavy to be combined. For the solution above, elevator ride 1 involves cow #1 and #3, elevator ride 2 involves cow #2, and elevator ride 3 involves cow #4. Several other solutions are possible for this input.

解题思路

看数据范围,状态dp。设dp[S]为S这个状态的最小需要电梯数,发现这样并不能去转移,所以需要一个辅助数组g[S]表示在这个状态下最优时这个电梯的空间。转移时细节要注意。时间复杂度O(2^n*n)

代码

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int dp[1<<19],g[1<<19];
int w[20],n,V; int main() {
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
scanf("%d%d",&n,&V);g[0]=V;
for(register int i=1; i<=n; i++) scanf("%d",&w[i]);
for(register int i=0;i<1<<n;i++) g[i]=V;
for(register int S=0; S<1<<n; S++)
for(register int i=1; i<=n; i++){
int ff=0,gg=0;
if(!((1<<i-1)&S)) {
if(g[S]>=w[i]) {
ff=dp[S];
gg=g[S]-w[i];
} else{
gg=V-w[i];
ff=dp[S]+1;
}
if(dp[S|(1<<i-1)]>ff){
g[S|(1<<i-1)]=gg;
dp[S|(1<<i-1)]=ff;
}
else if(dp[S|(1<<i-1)]==ff && g[S|(1<<i-1)]<gg) //次数一样比空间
g[S|(1<<i-1)]=gg;
}
}
if(g[(1<<n)-1]!=V) dp[(1<<n)-1]++; //如果还有几个牛在电梯上
printf("%d",dp[(1<<n)-1]);
return 0;
}

LUOGU P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper的更多相关文章

  1. 洛谷P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper

    P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 题目描述 A little known fact about Bessie and friends is ...

  2. P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper

    题目描述 给出n个物品,体积为w[i],现把其分成若干组,要求每组总体积<=W,问最小分组.(n<=18) 输入格式: Line 1: N and W separated by a spa ...

  3. 洛谷 P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper

    题目描述 A little known fact about Bessie and friends is that they love stair climbing races. A better k ...

  4. P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 状压dp

    这个状压dp其实很明显,n < 18写在前面了当然是状压.状态其实也很好想,但是有点问题,就是如何判断空间是否够大. 再单开一个g数组,存剩余空间就行了. 题干: 题目描述 A little k ...

  5. [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper

    洛谷题目链接:[USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 题目描述 A little known fact about Bessie and friends is ...

  6. [USACO12MAR] 摩天大楼里的奶牛 Cows in a Skyscraper

    题目描述 A little known fact about Bessie and friends is that they love stair climbing races. A better k ...

  7. [bzoj2621] [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper

    题目链接 状压\(dp\) 根据套路,先设\(f[sta]\)为状态为\(sta\)时所用的最小分组数. 可以发现,这个状态不好转移,无法判断是否可以装下新的一个物品.于是再设一个状态\(g[sta] ...

  8. [luoguP3052] [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper(DP)

    传送门 输出被阉割了. 只输出最少分的组数即可. f 数组为结构体 f[S].cnt 表示集合 S 最少的分组数 f[S].v 表示集合 S 最少分组数下当前组所用的最少容量 f[S] = min(f ...

  9. [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper (状态压缩DP)

    不打算把题目放着,给个空间传送门,读者们自己去看,传送门(点我)    . 这题是自己做的第一道状态压缩的动态规划. 思路: 在这题中,我们设f[i]为i在二进制下表示的那些牛所用的最小电梯数. 设g ...

随机推荐

  1. UMP系统架构 Mnesia

  2. Android开发 ShapeDrawable详解

    前言 ShapeDrawable一开始我以为它是对应xml文件属性里的shape的画图,后来发现我错了... 其实ShapeDrawable更像是一共自由度更大跟偏向与实现draw()方法的一共图像绘 ...

  3. [JZOJ3167] 【GDOI2013模拟3】查税

    题目 描述 题目大意 维护一个有一次函数组成的序列 具体来说,对于位置xxx,现在的值为sx+zx∗(T−tx)s_x+z_x*(T-t_x)sx​+zx​∗(T−tx​) 有两个操作,修改某个位置上 ...

  4. 如何在 Apache Flink 中使用 Python API?

    本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划, ...

  5. 03_Hibernate关系映射

    关系映射? Hibernate的主要目的就是JAVA程序员可以随心所欲的使用对象编程思维来操作数据库.一些数据库表的关系我们应该可以通过hibernate实现,比如数据库中用到的主外键关系,还有一些与 ...

  6. python 虚拟环境virtualenv搭建

    一.安装虚拟环境 pip install  virtualenv -i  https://pypi.douban.com/simple   用国内镜像,速度更快 二.创建虚拟目录 在需要存放软件工程的 ...

  7. Linux常见问题解答--如何修复“tar:Exiting with failure status due to previous errors”

    问题: 当我用tar命令来创建一个压缩文件时,总在执行过程中失败,并且抛出一个错误说明"tar:由于前一个错误导致失败退出"("Exiting with failure ...

  8. PKU OJ A Bug's life

    http://bailian.openjudge.cn/tm2018/G/ #include <iostream> #include <vector> #include < ...

  9. ubuntu关闭防火墙(默认命令)

  10. Top- Linux必学的60个命令

    1.作用 top命令用来显示执行中的程序进程,使用权限是所有用户. 2.格式 top [-] [d delay] [q] [c] [S] [s] [i] [n] 3.主要参数 d:指定更新的间隔,以秒 ...