LUOGU P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
题目描述
A little known fact about Bessie and friends is that they love stair climbing races. A better known fact is that cows really don’t like going down stairs. So after the cows finish racing to the top of their favorite skyscraper, they had a problem. Refusing to climb back down using the stairs, the cows are forced to use the elevator in order to get back to the ground floor.
The elevator has a maximum weight capacity of W (1 <= W <= 100,000,000) pounds and cow i weighs C_i (1 <= C_i <= W) pounds. Please help Bessie figure out how to get all the N (1 <= N <= 18) of the cows to the ground floor using the least number of elevator rides. The sum of the weights of the cows on each elevator ride must be no larger than W.
给出n个物品,体积为w[i],现把其分成若干组,要求每组总体积<=W,问最小分组。(n<=18)
输入输出格式
输入格式:
Line 1: N and W separated by a space.
Lines 2..1+N: Line i+1 contains the integer C_i, giving the weight of one of the cows.
输出格式:
- A single integer, R, indicating the minimum number of elevator rides needed.
one of the R trips down the elevator.
输入输出样例
输入样例#1:
4 10
5
6
3
7
输出样例#1:
3
说明
There are four cows weighing 5, 6, 3, and 7 pounds. The elevator has a maximum weight capacity of 10 pounds.
We can put the cow weighing 3 on the same elevator as any other cow but the other three cows are too heavy to be combined. For the solution above, elevator ride 1 involves cow #1 and #3, elevator ride 2 involves cow #2, and elevator ride 3 involves cow #4. Several other solutions are possible for this input.
解题思路
看数据范围,状态dp。设dp[S]为S这个状态的最小需要电梯数,发现这样并不能去转移,所以需要一个辅助数组g[S]表示在这个状态下最优时这个电梯的空间。转移时细节要注意。时间复杂度O(2^n*n)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[1<<19],g[1<<19];
int w[20],n,V;
int main() {
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
scanf("%d%d",&n,&V);g[0]=V;
for(register int i=1; i<=n; i++) scanf("%d",&w[i]);
for(register int i=0;i<1<<n;i++) g[i]=V;
for(register int S=0; S<1<<n; S++)
for(register int i=1; i<=n; i++){
int ff=0,gg=0;
if(!((1<<i-1)&S)) {
if(g[S]>=w[i]) {
ff=dp[S];
gg=g[S]-w[i];
} else{
gg=V-w[i];
ff=dp[S]+1;
}
if(dp[S|(1<<i-1)]>ff){
g[S|(1<<i-1)]=gg;
dp[S|(1<<i-1)]=ff;
}
else if(dp[S|(1<<i-1)]==ff && g[S|(1<<i-1)]<gg) //次数一样比空间
g[S|(1<<i-1)]=gg;
}
}
if(g[(1<<n)-1]!=V) dp[(1<<n)-1]++; //如果还有几个牛在电梯上
printf("%d",dp[(1<<n)-1]);
return 0;
}
LUOGU P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper的更多相关文章
- 洛谷P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 题目描述 A little known fact about Bessie and friends is ...
- P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
题目描述 给出n个物品,体积为w[i],现把其分成若干组,要求每组总体积<=W,问最小分组.(n<=18) 输入格式: Line 1: N and W separated by a spa ...
- 洛谷 P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
题目描述 A little known fact about Bessie and friends is that they love stair climbing races. A better k ...
- P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 状压dp
这个状压dp其实很明显,n < 18写在前面了当然是状压.状态其实也很好想,但是有点问题,就是如何判断空间是否够大. 再单开一个g数组,存剩余空间就行了. 题干: 题目描述 A little k ...
- [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
洛谷题目链接:[USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 题目描述 A little known fact about Bessie and friends is ...
- [USACO12MAR] 摩天大楼里的奶牛 Cows in a Skyscraper
题目描述 A little known fact about Bessie and friends is that they love stair climbing races. A better k ...
- [bzoj2621] [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
题目链接 状压\(dp\) 根据套路,先设\(f[sta]\)为状态为\(sta\)时所用的最小分组数. 可以发现,这个状态不好转移,无法判断是否可以装下新的一个物品.于是再设一个状态\(g[sta] ...
- [luoguP3052] [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper(DP)
传送门 输出被阉割了. 只输出最少分的组数即可. f 数组为结构体 f[S].cnt 表示集合 S 最少的分组数 f[S].v 表示集合 S 最少分组数下当前组所用的最少容量 f[S] = min(f ...
- [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper (状态压缩DP)
不打算把题目放着,给个空间传送门,读者们自己去看,传送门(点我) . 这题是自己做的第一道状态压缩的动态规划. 思路: 在这题中,我们设f[i]为i在二进制下表示的那些牛所用的最小电梯数. 设g ...
随机推荐
- U-BOOT 对 Nand Flash 命令的支持
U-BOOT 对 Nand Flash 命令的支持 在 UBOOT 下对 Nand Flash 的支持主要是在命令行下实现对 nand flash 的操作.对 nand flash 实现的命令 为: ...
- [NOIP2019模拟赛]LuoguP4261白金元首与克劳德斯
题目描述 给出坐标系中n个矩形,类型1的矩形每单位时间向x轴正方向移动1个单位,类型2的矩形向y轴正方向,初始矩形不重叠,一个点被矩形覆盖当且仅当它在矩形内部(不含边界),求$(-\infty ,+\ ...
- [NOIP2019模拟赛]夹缝
夹缝 问题描述: 二维空间内有两面相对放置的,向无限远延伸的镜子,以镜子的方向及其法向量建立坐标系,我们选定一个法向量方向下面称“上”.在镜子上的整数位置,存在着一些传感器,传感器不影响光线的反射,光 ...
- DOM节点的创建、插入、删除
值得注意的是:节点的创建.插入以及删除都是操作父级容器.(1)创建var newDiv = documnet.createElement('div'); ——创建的元素只能操作一次 (2)插入/追加a ...
- C++ 系列:extern
extern 作用1:声明外部变量现代编译器一般采用按文件编译的方式,因此在编译时,各个文件中定义的全局变量是互相透明的,也就是说,在编译时,全局变量的可见域限制在文件内部. 例1:创建一个工程,里面 ...
- Oracle - 用户及表空间的创建和删除
-- 查询所有用户 SELECT USERNAME FROM ALL_USERS; -- 查询所有表空间 SELECT TABLESPACE_NAME FROM USER_TABLESPACES; - ...
- Python-网络编程之粘包、UDP
目录 粘包问题 subprocess模块 struct模块 UDP协议编程 简易qq聊天室 粘包问题 什么是粘包问题呢? 在我们写 tcp socket编程的时候,tcp协议是一个流式的协议,服务端第 ...
- Android之shape属性简介和使用
1.shape标签简介 shape的形状,默认为矩形,可以设置为矩形(rectangle).椭圆形(oval).线性形状(line).环形(ring) ! 设置形状: <shape xmln ...
- 2018CCPC吉林赛区 | 部分题解 (HDU6555 HDU6556 HDU6559 HDU6561)
// 杭电上的重现赛:http://acm.hdu.edu.cn/contests/contest_show.php?cid=867 // 杭电6555~6566可交题 A - The Fool 题目 ...
- 关于Spring Cloud Feign的一些记录!
学习Spring Cloud Feign过程中,相关资料都会反复强调:微服务调用的话(@FeignClient) 客户端方法的返回值和服务端方法的返回值还有方法名之类的都是要求一致的! 关于方法名是 ...