我们考虑线性代数上面的矩阵知识

啊呸,是基础数学

斐波那契的矩阵就不讲了

定义矩阵 \(f_x\) 是第 \(x\) 项的斐波那契矩阵

因为

\(f_i * f_j = f_{i+j}\)

然后又因为 \(\texttt{AB+AC=A(B+C)}\)

所以 \(\sum_{i=l}^{r} f(a_i+x) = f(x)\sum_{i=l}^{r} f(a_i)\)

线段树板子题,维护一个矩阵,这题没了

// by Isaunoya
#include <bits/stdc++.h>
using namespace std; #define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
#define int long long const int _ = 1 << 21;
struct I {
char fin[_], *p1 = fin, *p2 = fin;
inline char gc() {
return (p1 == p2) && (p2 = (p1 = fin) + fread(fin, 1, _, stdin), p1 == p2) ? EOF : *p1++;
}
inline I& operator>>(int& x) {
bool sign = 1;
char c = 0;
while (c < 48) ((c = gc()) == 45) && (sign = 0);
x = (c & 15);
while ((c = gc()) > 47) x = (x << 1) + (x << 3) + (c & 15);
x = sign ? x : -x;
return *this;
}
inline I& operator>>(double& x) {
bool sign = 1;
char c = 0;
while (c < 48) ((c = gc()) == 45) && (sign = 0);
x = (c - 48);
while ((c = gc()) > 47) x = x * 10 + (c - 48);
if (c == '.') {
double d = 1.0;
while ((c = gc()) > 47) d = d * 0.1, x = x + (d * (c - 48));
}
x = sign ? x : -x;
return *this;
}
inline I& operator>>(char& x) {
do
x = gc();
while (isspace(x));
return *this;
}
inline I& operator>>(string& s) {
s = "";
char c = gc();
while (isspace(c)) c = gc();
while (!isspace(c) && c != EOF) s += c, c = gc();
return *this;
}
} in;
struct O {
char st[100], fout[_];
signed stk = 0, top = 0;
inline void flush() {
fwrite(fout, 1, top, stdout), fflush(stdout), top = 0;
}
inline O& operator<<(int x) {
if (top > (1 << 20)) flush();
if (x < 0) fout[top++] = 45, x = -x;
do
st[++stk] = x % 10 ^ 48, x /= 10;
while (x);
while (stk) fout[top++] = st[stk--];
return *this;
}
inline O& operator<<(char x) {
fout[top++] = x;
return *this;
}
inline O& operator<<(string s) {
if (top > (1 << 20)) flush();
for (char x : s) fout[top++] = x;
return *this;
}
} out;
#define pb emplace_back
#define fir first
#define sec second template < class T > inline void cmax(T & x , const T & y) {
(x < y) && (x = y) ;
}
template < class T > inline void cmin(T & x , const T & y) {
(x > y) && (x = y) ;
} const int mod = 1e9 + 7 ;
const int maxn = 1e5 + 51 ;
struct matrix {
int a[3][3] ;
matrix () {
rep(i , 1 , 2) rep(j , 1 , 2) a[i][j] = 0 ;
}
void clr() {
rep(i , 1 , 2) rep(j , 1 , 2) a[i][j] = 0 ;
rep(i , 1 , 2) a[i][i] = 1 ;
}
bool empty() {
if(a[1][1] ^ 1) return false ;
if(a[1][2] || a[2][1]) return false ;
if(a[2][2] ^ 1) return false ;
return true ;
}
matrix operator * (const matrix & other) const {
matrix res ;
rep(i , 1 , 2) rep(j , 1 , 2) {
res.a[i][j] = 0 ;
rep(k , 1 , 2) res.a[i][j] = (res.a[i][j] + a[i][k] * other.a[k][j]) % mod ;
}
return res ;
}
matrix operator + (const matrix & other) const {
matrix res ;
rep(i , 1 , 2) rep(j , 1 , 2) res.a[i][j] = (a[i][j] + other.a[i][j] >= mod) ? a[i][j] + other.a[i][j] - mod : a[i][j] + other.a[i][j] ;
return res ;
}
} ;
matrix qwq ;
matrix qpow(matrix a , int k) {
matrix res = a ; -- k ;
for( ; k ; a = a * a , k >>= 1)
if(k & 1) res = res * a ;
return res ;
}
int n , m ;
int a[maxn] ;
matrix s[maxn << 2] , tag[maxn << 2] ;
void build(int l , int r , int o) {
tag[o].clr() ;
if(l == r) {
s[o] = qpow(qwq , a[l]) ;
return ;
}
int mid = l + r >> 1 ;
build(l , mid , o << 1) ;
build(mid + 1 , r , o << 1 | 1) ;
s[o] = s[o << 1] + s[o << 1 | 1] ;
}
void psd(int o) {
if(tag[o].empty()) return ;
tag[o << 1] = tag[o << 1] * tag[o] ;
tag[o << 1 | 1] = tag[o << 1 | 1] * tag[o] ;
s[o << 1] = s[o << 1] * tag[o] ;
s[o << 1 | 1] = s[o << 1 | 1] * tag[o] ;
tag[o].clr() ;
}
void upd(int a , int b , int l , int r , matrix x , int o) {
if(a <= l && r <= b) {
s[o] = s[o] * x ;
tag[o] = tag[o] * x ;
return ;
}
psd(o) ;
int mid = l + r >> 1 ;
if(a <= mid) upd(a , b , l , mid , x , o << 1) ;
if(b > mid) upd(a , b , mid + 1 , r , x , o << 1 | 1) ;
s[o] = s[o << 1] + s[o << 1 | 1] ;
}
matrix qry(int a , int b , int l , int r , int o) {
if(a <= l && r <= b) {
return s[o] ;
} psd(o) ;
int mid = l + r >> 1 ;
matrix res ;
if(a <= mid) res = res + qry(a , b , l , mid , o << 1) ;
if(b > mid) res = res + qry(a , b , mid + 1 , r , o << 1 | 1) ;
return res ;
}
signed main() {
#ifdef _WIN64
freopen("testdata.in" , "r" , stdin) ;
#endif
qwq.a[1][1] = qwq.a[1][2] = qwq.a[2][1] = 1 ;
qwq.a[2][2] = 0 ;
in >> n >> m ;
rep(i , 1 , n) in >> a[i] ;
build(1 , n , 1) ;
while(m --) {
int opt ;
in >> opt ;
if(opt == 1) {
int l , r , v ;
in >> l >> r >> v ;
upd(l , r , 1 , n , qpow(qwq , v) , 1) ;
}
else {
int l , r ;
in >> l >> r ;
out << qry(l , r , 1 , n , 1).a[1][2] << '\n' ;
}
}
return out.flush(), 0;
}

CF718C Sasha and Array [线段树+矩阵]的更多相关文章

  1. CF718C Sasha and Array 线段树+矩阵加速

    正解:线段树 解题报告: 传送门! 首先这种斐波拉契,又到了1e9的范围,又是求和什么的,自然而然要想到矩阵加速昂 然后这里主要是考虑修改操作,ai+=x如果放到矩阵加速中是什么意思呢QAQ? 那不就 ...

  2. CF718C Sasha and Array 线段树 + 矩阵乘法

    有两个操作: 将 $[l,r]$所有数 + $x$ 求 $\sum_{i=l}^{r}fib(i)$ $n=m=10^5$   直接求不好求,改成矩阵乘法的形式:  $a_{i}=M^x\times ...

  3. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  4. CF719E. Sasha and Array [线段树维护矩阵]

    CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+ ...

  5. Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵

    E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...

  6. codeforces 719E E. Sasha and Array(线段树)

    题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input sta ...

  7. Codeforces 719 E. Sasha and Array (线段树+矩阵运算)

    题目链接:http://codeforces.com/contest/719/problem/E 题意:操作1将[l, r] + x; 操作2求f[l] + ... + f[r]; 题解:注意矩阵可以 ...

  8. 【题解】[CF718C Sasha and Array]

    [题解]CF718C Sasha and Array 对于我这种喜欢写结构体封装起来的选手这道题真是太对胃了\(hhh\) 一句话题解:直接开一颗线段树的矩阵然后暴力维护还要卡卡常数 我们来把\(2 ...

  9. Wannafly Winter Camp 2019.Day 8 div1 E.Souls-like Game(线段树 矩阵快速幂)

    题目链接 \(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= = 以后要注意常量啊啊啊 \(Description\) 每个位置有一个\(3\times3\)的矩阵, ...

随机推荐

  1. 阿里云服务器ECS Ubuntu18.04 建立新用户

    昨天花了好长时间终于把界面功能弄好了,今天找时间再折腾一下: 1.建立新的用户: ssh连接上,用以下命令建立新用户,并设置密码: 创建普通用户“myname”成功,接下来为用户“myname”赋予s ...

  2. javascript js获取html元素各种距离方法

    //滚动条 scrollLeft//滚动条距左边距离 scrollTop//滚动条距顶部距离 scrollWidth//滚动条元素的宽 scrollHeight//滚动条元素的高 //可视范围 cli ...

  3. javascript 对象api

    // Object 构造函数的属性: Object.prototype//可以为所有 Object 类型的对象添加属性 class A extends B{ constructor(){ super( ...

  4. centos7.5下yum安装mysql-5.6.43

    cd ~/ && cat /etc/redhat-release yum list installed |grep mysql #<===查看是否安装mysql,如果已经安装,使 ...

  5. finalshell连接工具

    FinalShell功能特点: 1.多平台支持Windows,Mac OS X,Linux2.多标签,批量服务器管理.3.支持登录Ssh和Windows远程桌面.4.漂亮的平滑字体显示,内置100多个 ...

  6. Nginx Rewrite相关功能

    目录 Nginx Rewrite相关功能 ngx_http_rewrite_module模块指令: if指令: set指令: break指令: return指令: rewrite_log指令: rew ...

  7. SpringBoot安全管理--(三)整合shiro

    简介: Apache Shiro 是一一个开源的轻量级的Java安全框架,它提供身份验证.授权.密码管理以及会话管理等功能. 相对于Spring Security, Shiro框架更加直观.易用,同时 ...

  8. bs 网站获取电子秤重量方案

    1:开发一个winform小程序专门用来读取电子秤数据 电子秤链接串口开发需要注意的是 端口名称跟波特率,校验位 (本样例设置的是7)一定要对,不然取出来的是错的, 还有串口取出来数据是反的,需要转过 ...

  9. 「Flink」理解流式处理重要概念

    什么是流式处理呢? 这个问题其实我们大部分时候是没有考虑过的,大多数,我们是把流式处理和实时计算放在一起来说的.我们先来了解下,什么是数据流. 数据流(事件流) 数据流是无边界数据集的抽象 我们之前接 ...

  10. wordpress 配置坑详解

    首先 经过我测试,php74模块没有支持apache的.所以升级到php74 之后,php无法使用. 最基本的函数phpinfo 调用不出来,没有相关的模块. 安装mariadb 10.4 之后发现, ...