• 题意:一个图n个点n条边保证点能互相到达,ab有边意味着ab互相厌恶,求一个集合,使得集合里元素最多而且没有人互相厌恶
  • 删去环上一条边树形dp,比如删掉的边连着a,b,那么先dp出不选a的最大值,再dp出不选b的最大值。
  • 如果每次找到环删边的方法是直接把边断掉,这样会出现一个Bug就是a有指向b的边,b有指向a的边,这样形成的环其实不需要删掉
  • 解决办法:就是建边的时候如果是上面的情况a b之间就建了两条边,那这样把重边删去就行了(删完之后就break掉)
  • 代码:
     #include <bits/stdc++.h>
    #define nmax 1000010 using namespace std;
    typedef long long ll;
    vector <int> g[nmax];
    int n, in, a, b, cnt;
    ll d[nmax][]={}; // dp[u][1] = sum dp[v][0] + zl[u] dp[u][0] = sum max(dp[v][0],dp[v][1]+x[v])
    int zl[nmax], vis[nmax]={}; void dfs(int u, int fa){
    d[u][] = zl[u];
    for (int i=; i<g[u].size(); i++) {
    int v = g[u][i];
    if(v==fa || v==) continue;
    dfs(v, u);
    d[u][] += d[v][];
    d[u][] += max(d[v][], d[v][]);
    }
    } void fr(int u, int fa){
    cnt++;
    vis[u] = ;
    for (int i=; i<g[u].size(); i++) {
    int v = g[u][i];
    if(v == fa || v == ) continue;
    if( vis[v] ) { a=u; b=v; }
    else fr(v, u);
    }
    } inline void del(int x, int y){
    for (int i=; i<g[x].size(); i++) if( g[x][i] == y ) { g[x][i] = ; break; }
    } inline void init(int u, int fa){
    d[u][] = d[u][] = ;
    for (int i=; i<g[u].size(); i++) {
    int v = g[u][i];
    if( v==fa || v== ) continue;
    init(v, u);
    }
    } int main(){
    cin >> n;
    for (int i=; i<=n; i++) {
    scanf("%d%d", &zl[i], &in);
    g[in].push_back(i);
    g[i].push_back(in);
    }
    ll ans=, ta;
    for (int i=; i<=n; i++) {
    if(vis[i]) continue;
    cnt = ; //这个树套环的节点个数
    fr(i, );
    del(a, b);
    del(b, a);
    dfs(a, );
    ta = d[a][];
    init(i, );
    dfs(b, );
    ta = max(ta, d[b][] );
    init(i, );
    ans += ta;
    }
    cout << ans << endl;
    return ;
    }

    (⓿_⓿)

BZOJ1040: [ZJOI2008]骑士 树套环DP的更多相关文章

  1. luogu2607/bzoj1040 [ZJOI2008]骑士 (基环树形dp)

    N个点,每个点发出一条边,那么这个图的形状一定是一个基环树森林(如果有重边就会出现森林) 那我做f[0][x]和f[1][x]分别表示对于x子树,x这个点选还是不选所带来的最大价值 然后就变成了这好几 ...

  2. 2018.11.06 bzoj1040: [ZJOI2008]骑士(树形dp)

    传送门 由题可知给出的是基环森林. 因此对于每个基环森林找到环断开dpdpdp两次就行了. 代码: #include<bits/stdc++.h> using namespace std; ...

  3. BZOJ_1040_[ZJOI2008]骑士_树形DP

    BZOJ_1040_[ZJOI2008]骑士_树形DP 题意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪 ...

  4. BZOJ1040: [ZJOI2008]骑士(奇环树,DP)

    题目: 1040: [ZJOI2008]骑士 解析: 假设骑士\(u\)讨厌骑士\(v\),我们在\(u\),\(v\)之间连一条边,这样我们就得到了一个奇环树(奇环森林),既然是一颗奇环树,我们就先 ...

  5. [BZOJ1040][ZJOI2008]骑士(环套树dp)

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5816  Solved: 2263[Submit][Status ...

  6. [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集

    骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...

  7. 【洛谷】2607: [ZJOI2008]骑士【树形DP】【基环树】

    P2607 [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一 ...

  8. 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士

    基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...

  9. 【环套树+树形dp】Bzoj1040 [ZJOI2008] 骑士

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...

随机推荐

  1. Kali桥接模式下配置ip

    以管理员身份运行虚拟机 打开控制面板-->网络和Internet-->更改适配器 再在虚拟机处桥接到这个WLAN2 点击 编辑-->编辑虚拟网卡 没有网卡就点上图的添加网络作为桥接网 ...

  2. centos6.5和centos7.5统一字符集为zh_CN.UTF-8解决系统和MySQL数据库乱码问题

    linux的服务器需要做的操作 centos6.5下: 修改默认字符集为 zh_CN.UTF-8,如果没有中文语言包可能需要安装中文语言包支持 [root@meinv01 ~]# yum groupi ...

  3. 学习CSS之如何改变CSS伪元素的样式

    一.CSS伪元素 CSS 伪元素用于向某些选择器设置特殊效果. 伪元素的用法如下: selector:pseudo-element {property:value;} CSS 类也可以和伪元素搭配使用 ...

  4. mac下搭建http服务器(apache+php),使用homebrew升级php

    新版mac依旧预装了 Apache ,但是已经不能在 「系统偏好设置」中的「Web 共享」来开启了,需要手动通过命令行开启. 启动Apache 启动:sudo apachectl start 停止:s ...

  5. 在Kali linux下使用docker配置sqli-labs(国内源的配置和系统软件更新)

    本篇blog导航: ~前言 ~第一步:在安装好的kali配置国内源 ~第二步:安装docker ~第三步:docker下安装sqli-labs ~写在最后. 前言: 最近闲来无事,在闯关sqli-la ...

  6. C#中实现文件拖放打开的方法

    C#中实现文件拖放打开的方法 设置Form属性 AllowDrop = True; 在Form事件中 private void Form1_DragDrop(object sender, DragEv ...

  7. WPF 原生绑定和命令功能使用指南

    WPF 原生绑定和命令功能使用指南 魏刘宏 2020 年 2 月 21 日 如今,当谈到 WPF 时,我们言必称 MVVM.框架(如 Prism)等,似乎已经忘了不用这些的话该怎么使用 WPF 了.当 ...

  8. vue目录结构熟悉

    给项目的入口文件做点小改变: [补充:编辑器建议使用vscode,我还没装,暂时先用phpstorm] 打开 APP.vue 文件,代码如下(解释在注释中) <!-- 展示模板 --> & ...

  9. 【Android开发艺术探索】四大组件的工作过程

    个人博客 http://www.milovetingting.cn 四大组件的工作过程 四大组件:Activity.Service.BroadcastReceiver.ContentProvider ...

  10. RadioButton改写的开关按钮

    先上效果图: 这个控件其实是俩个RadioButton,通过样式就可以实现. 样式资源: <Style x:Key="Tong_Yong_RadioButtonStyle" ...