JZOJ2368 【SDOI2011】黑白棋
题目
题目大意
在一个1*n的棋盘上,有黑棋和白棋交错分布,每次,一个人可以移动自己的ddd颗旗子。
问先手必胜的方案数。
思考历程
在一开始,我就有点要放弃的念头。
因为这题是一道博弈问题。
我是非常不擅长博弈类问题的。
但是其他的题有想不出来,于是只能硬是想了好久。
最终那了个部分分。
正解
这题正解当然跟博弈有一些关系。
首先,对于这题有一个隐藏的限制。
白棋不能向左移,黑棋不能向右移。
这是为什么?
我们可以感性理解一下(证明什么的我当然不会):
如果白棋左移,那么在它右边的黑棋可以模仿它的操作,也跟着左移。
同理,如果黑棋右移,那么在它左边的白棋也可以模仿他的动作,也跟着右移。
那么我们就可以发现,这样走是没有意义的。
然后我们就可以转换问题的模型:
可以将对应(相邻)的两个白棋和黑棋中间的距离当作石子。
那么就有K2\frac{K}{2}2K堆石子,然后每次可以在至多ddd堆石子,至少111堆石子中各自拿走一颗石子。
这个问题叫Nimk问题。
这又是个什么东西啊?
对于Nimk问题,我们有一个神奇的结论:将所有堆石子的个数化成二进制,每一位统计一下111的个数,如果个数都是d+1d+1d+1的倍数,那么这就是必败态。
如何证明?
我们可以感性理解一下:怎么又是感性理解……
先手只能拿走111到ddd堆中的石子,那么,后手可以故意的模仿,然后将两人取得的石子的总数固定在d+1d+1d+1。那么如果一直这么下去,后手必定会赢。
为什么要转成二进制呢?
我觉得,其实只要转成了二进制,那么后手就能保证每次能够取得这么多的石子,使得两个人取石子的总数为d+1d+1d+1。具体怎样解释,我觉得我还要好好理解一下,暂且感性感性吧(感性理解真是一个好东西)。
模型转换成了Nimk问题,让我们求先手必胜的方案数。
先手必胜的方案数等于总方案数减去先手必败的方案数。
如何求先手必败的方案数呢?
当然是DP。
设fi,jf_{i,j}fi,j表示在二进制的前iii位中,一共用了jjj颗石子的先手必败的方案数。
仔细想想这个状态没有任何问题,因为我们只需要保证在每一个二进制位上都满足它必败就好了。这样设状态之后转移就方便多了。
我们再枚举一个kkk(小写的kkk,不要混淆),表示一共有k∗(d+1)k*(d+1)k∗(d+1)堆石子下一个二进制位上为111。
转移?
fi+1,j+k∗(d+1)∗2i←fi,j∗CK2k∗(d+1)f_{i+1,j+k*(d+1)*2^i}\leftarrow f_{i,j}*C_{\frac{K}{2}}^{k*(d+1)}fi+1,j+k∗(d+1)∗2i←fi,j∗C2Kk∗(d+1)
注意:为了程序实现方便,在这个方程中,前iii位的最高位实际上是i−1i-1i−1位。这样的DP中,初始化直接是f0,0=1f_{0,0}=1f0,0=1
在一波DP之后,我们就可以统计答案了。
其实我们可以将其视为,在n−j−Kn-j-Kn−j−K个空中插入K/2K/2K/2个东西。
这个东西可以用组合数来搞一搞,那么就是Cn−j−K2K2C_{n-j-\frac{K}{2}}^{\frac{K}{2}}Cn−j−2K2K种方案,用它来乘上fMAXBIT,jf_{MAXBIT,j}fMAXBIT,j就好了。
然后这题就愉快地解决了。
复杂度表示懒得分析。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mo 1000000007
int n,K,d;
int C[10001][101];
int f[17][10001];
int main(){
scanf("%d%d%d",&n,&K,&d);
C[0][0]=1;
for (int i=1;i<=n;++i){
C[i][0]=1;
for (int j=1;j<=i && j<=K;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mo;
}
f[0][0]=1;
for (int i=0;i<15;++i)
for (int j=0;j<=n-K;++j)
if (f[i][j])
for (int k=0;k*(d+1)<=K>>1 && j+k*(d+1)*(1<<i)<=n-K;++k)
(f[i+1][j+k*(d+1)*(1<<i)]+=(long long)f[i][j]*C[K>>1][k*(d+1)]%mo)%=mo;
int ans=0;
for (int j=0;j<=n-K;++j)
ans=(ans+(long long)f[15][j]*C[n-j-(K>>1)][K>>1]%mo)%mo;
printf("%d\n",(C[n][K]-ans+mo)%mo);
return 0;
}
我认为这个程序实现不用注释。
总结
博弈类问题,可真是一个神奇东西啊!
然而,好多的我都不会严谨证明。
感性理解就好……
我觉得以后要多做一些博弈类问题。
JZOJ2368 【SDOI2011】黑白棋的更多相关文章
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋
Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...
- [SDOI2011]黑白棋
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)
题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...
- 【bzoj2281】 Sdoi2011—黑白棋
http://www.lydsy.com/JudgeOnline/problem.php?id=2281 (题目链接) 题意 一个1*n的棋盘,棋盘上一个隔一个的放着个黑棋和白棋,最左端是白棋,最右端 ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
随机推荐
- 分享安装Apache、MySQL、PHP、LAMP的完整教程
Operation timed out after 30000 milliseconds with 0 out of -1 bytes received请注意,在Linux中输入密码时,不会显示您输入 ...
- 免费带你体验阿里巴巴旗舰大数据计算产品MaxCompute
什么是MaxCompute? 众所周知,MaxCompute是阿里云推出的承载EB级的数据存储能力,百PB级的单日计算能力,公共云覆盖国内外十几个国家和地区,专有云包含城市大脑在内部署超过100+套的 ...
- hdu多校第二场 1005 (hdu6595) Everything Is Generated In Equal Probability
题意: 给定一个N,随机从[1,N]里产生一个n,然后随机产生一个n个数的全排列,求出n的逆序数对的数量,加到cnt里,然后随机地取出这个全排列中的一个非连续子序列(注意这个子序列可以是原序列),再求 ...
- vue cli2.x配置多环境打包
一.安装 npm install --save-dev cross-env 二.配置步骤 1.修改config下的文件 //test.env.js 'use strict' module.export ...
- 2428: [HAOI2006]均分数据
模拟退火.一种十分玄学的随机算法,网上可以查到比较详细的资料. 先随机地把数分成m组,每次随机地选择一个数,一开始直接选最小的一组,后来就随机一组,把这个数换到该组看看答案能不能变小,如果变小则换,如 ...
- <剑指offer>面试题
题目1:二维数组的查找 题目:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断 ...
- 逆元 组合A(n,m) C(n,m)递推 隔板法
求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...
- Java中9大内置基本数据类型Class实例和数组的Class实例
1.Java中9大内置几本数据类型: 对于对象来说,可以直接使用对象.getClass()或者Class.forName(className);.类名.class都可以获取Class实例. 但是我们的 ...
- UMP系统功能 容灾
- 【Uva 1220】Party at Hali-Bula
[Link]:https://cn.vjudge.net/contest/170078#problem/M [Description] 求一个树的最大独立子集; (即树的一个点集,这个点集中任意两个点 ...