二.python数据结构的性能分析
目录:
1.引言
2.列表
3.字典
一.引言
- 现在大家对 大O 算法和不同函数之间的差异有了了解。本节的目标是告诉你 Python 列表和字典操作的 大O 性能。然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结构的好处。重要的是了解这些数据结构的效率,因为它们是本博客实现其他数据结构所用到的基础模块。
二.列表:
- python 的设计者在实现列表数据结构的时候有很多选择。每一个这种选择都可能影响列表操作的性能。为了帮助我们做出正确的选择,他们查看了最常使用列表数据结构的方式,并且优化了实现,以便使得最常见的操作非常快。
- 在列表的操作有一个非常常见的编程任务就是是增加一个列表。我们马上想到的有两种方法可以创建更长的列表,可以使用 append 方法或拼接运算符。但是这两种方法那种效率更高呢。这对你来说很重要,因为它可以帮助你通过选择合适的工具来提高你自己的程序的效率。
- 让我们看看四种不同的方式,我们可以生成一个从0开始的n个数字的列表。首先,我们将尝试一个 for 循环并通过创建列表,然后我们将使用 append 而不是拼接。接下来,我们使用列表生成器创建列表,最后,也是最明显的方式,通过调用列表构造函数包装 range 函数。
def test1():
l = []
for i in range(1000):
l = l + [i] def test2():
l = []
for i in range(1000):
l.append(i) def test3():
l = [i for i in range(1000)] def test4():
l = list(range(1000))
- 下面我们来使用timeit模块来计算上述四种方式的平均运行时长是多少:
- timeit模块:该模块可以用来测试一段python代码的执行速度/时长。
- Timer类:该类是timeit模块中专门用于测量python代码的执行速度/时长的。原型为:class timeit.Timer(stmt='pass',setup='pass')。
- stmt参数:表示即将进行测试的代码块语句。
- setup:运行代码块语句时所需要的设置。
- timeit函数:timeit.Timer.timeit(number=100000),该函数返回代码块语句执行number次的平均耗时。
- 案例:
from timeit import Timer
#被测试的代码块
def func(n):
sum = 0
for i in range(0,100):
sum += i
#print(sum) 这个地方也会很大影响这个计算的效率 if __name__ == "__main__":
#参数2:因为参数1必须为字符串且表示的是即将被测试代码块函数的名字,因此参数2必须设置为执行参数1函数所需的设置
t = Timer('func(10)','from __main__ import func')
print(t.timeit(1000))
#结果:0.0075032 #每次结果运算的时间应该会有所不同
- 使用timeit模块来计算上述四种方式的平均运行时长是多少:
from timeit import Timer
def test1():
l = []
for i in range(1000):
l = l + [i] def test2():
l = []
for i in range(1000):
l.append(i) def test3():
l = [i for i in range(1000)] def test4():
l = list(range(1000)) if __name__ == '__main__':
t1 = Timer("test1()", "from __main__ import test1")
print("concat ",t1.timeit(number=1000), "milliseconds")
t2 = Timer("test2()", "from __main__ import test2")
print("append ",t2.timeit(number=1000), "milliseconds")
t3 = Timer("test3()", "from __main__ import test3")
print("comprehension ",t3.timeit(number=1000), "milliseconds")
t4 = Timer("test4()", "from __main__ import test4")
print("list range ",t4.timeit(number=1000), "milliseconds")
执行结果:
concat 2.7648504000000003 milliseconds
append 0.1303709999999998 milliseconds
comprehension 0.07775989999999977 milliseconds
list range 0.020507900000000134 milliseconds
注意:你上面看到的时间都是包括实际调用函数的一些开销,但我们可以假设函数调用开销在四种情况下是相同的,所以我们仍然得到的是有意义的比较。因此,拼接字符串操作需要 2.76 毫秒并不准确,而是拼接字符串这个函数需要 2.76毫秒。你可以测试调用空函数所需要的时间,并从上面的数字中减去它。剩下的基于列表的其他操作大家也可以使用timeit进行平均耗时的测量计算。
- 列表的相关操作的方法都是被封装好的,我们没有必要对相关操作的底层算法时间进行分析,下面直接给出大家一张基于列表操作的时间复杂度的表,供大家参考:

三.字典
- python 中第二个主要的数据结构是字典。你可能记得,字典和列表不同,你可以通过键而不是位置来访问字典中的项目。
- 字典的时间复杂度:

二.python数据结构的性能分析的更多相关文章
- 2.python数据结构的性能分析
一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结 ...
- 02 Python数据结构的性能分析
一.列表: - python 的设计者在实现列表数据结构的时候有很多选择.每一个这种选择都可能影响列表操作的性能.为了帮助他们做出正确的选择,他们查看了最常使用列表数据结构的方式,并且优化了实现,以便 ...
- 2 数据结构的性能分析 timeit
# python数据结构的性能分析 https://www.cnblogs.com/bobo-zhang/p/10521769.html from timeit import Timer #计算运行平 ...
- 常用排序算法的python实现和性能分析
常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...
- Python内置类型性能分析
Python内置类型性能分析 timeit模块 timeit模块可以用来测试一小段Python代码的执行速度. class timeit.Timer(stmt='pass', setup='pass' ...
- 【Python】常用排序算法的python实现和性能分析
作者:waterxi 原文链接 背景 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试题整 ...
- 面试中常用排序算法的python实现和性能分析
这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,我都尽可能的用大白话 ...
- Python程序的性能分析指南(转)
原文地址 :http://blog.jobbole.com/47619/ 虽然不是所有的Python程序都需要严格的性能分析,不过知道如何利用Python生态圈里的工具来分析性能,也是不错的. 分析一 ...
- Python内置性能分析模块timeit
timeit模块 timeit模块可以用来测试一小段Python代码的执行速度. class timeit.Timer(stmt='pass', setup='pass', timer=<tim ...
随机推荐
- 关于ie11的浏览器检测
我的电脑昨天更新的时候把ie11给更新出来了,然后发现我的skylineweb项目提示我的浏览器不是ie,这样显然是浏览器检测出现了问题.查找后找到了下面的解决方法.大家的电脑如果也更新成了ie11的 ...
- springboot核心技术(一)-----入门、配置
Hello World 1.创建一个maven工程:(jar) 2.导入spring boot相关的依赖 <parent> <groupId>org.springframewo ...
- Jeecms6中后台控制层Action如何将值传入前台视图层模板中的?
转载:https://blog.csdn.net/wsm201005030226/article/details/44343069 Jeecms后台控制层如何传值到前台freemarker的? ...
- 进一步封装poco下的mysql操作
为方便程序对mysql操作,我对poco的mysql进行了再次封装,主要是针对自己应用需要的部分. 开发工具:netbean 系统环境:centos7 poco版本: poco-1.9.0-all 主 ...
- ssh实现免密码登录和文件传输
一般的用户名密码认证不安全,很容易被暴力破解,还不方便:而大多数人都是选择使用 SSH 密钥认证,不仅安全还不用每次输密码 ssh密钥对 # 使用 ssh-keygen 生成非对称密钥,一路回车即可 ...
- 本周汇总 动态rem适配移动端/块状元素居中/透明度
1.动态rem适配移动端 !function(){ var width = document.documentElement.clientWidth; var head=document.getEle ...
- 使用tomcat部署多个站点,访问时当然不能带上下文路径咯
参考 http://blog.sina.com.cn/s/blog_6341fc0f0100lzaj.html tomcat的server.xml文件(比如C:\Program Files\Apach ...
- Oracle时间一串数字转为日期格式
一.前台处理 js中接收到后台返回的json字符串中的日期类型的字段都变成了一串数字,例如:1500341149000.所以我们需要将这个串格式化形如:2017-07-18 09:25:49. 1.首 ...
- day37 06-Hibernate二级缓存:更新时间戳区
二级缓存区:类缓存区,集合缓存区,更新时间戳区. 它会记录一个时间T1.其实在我们查询之后它会记录一个时间.假设时间叫做T1.就是你查询完之后的当前时间是T1.当我们自己手动在下面做了一个更新之后,它 ...
- VI/VIM编辑器快捷键
常用快捷键: Ctrl+f 向下翻页 Ctrl+b 向上翻页 G 移动到文件最后一行 gg 移动到文件第一行 N+回车 ...