序列变换 HDU - 5256
序列变换 HDU - 5256
题目
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
input
第一行输入一个T(1≤T≤10),表示有多少组数据
每一组数据:
第一行输入一个N(1≤N≤105),表示数列的长度
第二行输入N个数A1,A2,...,An。
每一个数列中的元素都是正整数而且不超过106。
output
对于每组数据,先输出一行
Case #i:
然后输出最少需要修改多少个元素。
Sample Input
2
2
1 10
3
2 5 4
Sample Output
Case #1:
0
Case #2:
1
分析
一开始很容易就想到 \(\mathrm{LIS}\) 。先算出 \(\mathrm{LIS}\) 的长度,然后序列总长度减去 \(\mathrm{LIS}\) 的长度就行了。
但是隐隐间觉得有点不对,留意到题目中的严格递增,就想到了如果连续几个都是相同的怎么办。然后就举出了反例。
例如:1 2 2 2 3 。这个序列的 \(\mathrm{LIS}\) 为 1 2 3。按照上面的的方法算出的答案是 2 。但实际上,我们要修改成 1 2 3 4 5。要修改的个数为 3。
但我们还是想要往 \(\mathrm{LIS}\) 上靠,仔细分析一下,我们修改后的整个数组要满足如下的条件:
\]
怎么往 \(\mathrm{LIS}\) 上靠呢?\(\mathrm{LIS}\) 最后的式子是不是要满足:
\]
第一个式子中的 \(1\) 是不是有点碍事,留意到两边其实可以做一个操作:
\]
两边都可以减去一个 \(i\) , 那么就可以转化到 \(\mathrm{LIS}\) 的做法了。
再留意到 \(n \le 10^5,T \le 10\) , \(O(n^2)\) 的复杂度肯定是接受不了,要对朴素的做法进行一些优化。
其实也是一个贪心的做法。我们可以去维护这样一个 \(dp\) 数组。不妨设 \(len\) 为 \(dp\) 数组的长度。在遍历数组 \(arr\) 的时候,有两种情况:
- \(arr[i] \ge dp[len - 1]\),把 \(arr[i]\) 加到 \(dp\) 数组的结尾。
- \(arr[i] < dp[len - 1]\),二分查找 \(dp\) 数组里,第一个大于 \(arr[i]\) 数字,然后替换成 \(arr[i]\)。
然后,最后 \(len\) 就是 \(\mathrm{LIS}\) 的长度。
看得出来,数组 \(dp\) 本身就在维护一个尽可能长的上升序列,第一个操作很好理解,那么对于第二个操作,由贪心我们可以知道,如果有几个序列,那么序列末尾的数字越小,那么它能成为 \(\mathrm{LIS}\) 的概率越大?所以第二个操作就是不断地在保证它在成为 \(\mathrm{LIS}\)。如果但是如果替换的不是最后一个呢?由于是替换,不是增加或者减小,所以这对于最后的结果并没有影响,所以替换前面的数字并没有影响。(这造成了 \(dp\) 数组并不是 \(\mathrm{LIS}\) )。
所以用二分就能把 \(\mathrm{LIS}\) 优化到 \(O(n \log n)\)。
代码
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
#define mem(i, a) memset(i, a, sizeof(i))
#define sqr(x) ((x)*(x))
typedef long long ll;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 7;
using namespace std;
int arr[maxn], dp[maxn];
int main(void){
#ifdef ljxtt
freopen("data.in", "r", stdin);
#endif
int T; scanf("%d", &T);
int cases = 1;
while(T--){
int n; scanf("%d", &n);
for(int i = 0; i < n; i++){
scanf("%d", &arr[i]);
arr[i] -= i;
}
int len = 0;
dp[0] = arr[0];
for(int i = 1; i < n; i++){
if(arr[i] >= dp[len])
dp[++len] = arr[i];
else
*upper_bound(dp, dp + len + 1, arr[i]) = arr[i];
}
printf("Case #%d:\n%d\n", cases++, n - len - 1);
}
return 0;
}
序列变换 HDU - 5256的更多相关文章
- hdu 5256 序列变换 (LIS变形)
序列变换 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- 51nod 1294 :修改数组 && HDU 5256:序列变换
1294 修改数组 题目来源: HackerRank 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 取消关注 给出一个整数数组A,你可以将任何一个数修 ...
- LIS 2015百度之星初赛2 HDOJ 5256 序列变换
题目传送门 题意:中文题面 分析:LIS(非严格):首先我想到了LIS,然而总觉得有点不对:每个数先减去它的下标,防止下面的情况发生:(转载)加入序列是1,2,2,2,3,这样求上升子序列是3,也就是 ...
- 2015年百度之星初赛(1) --- C 序列变换
序列变换 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 序列变换(hdu5248)
序列变换 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 序列变换(Lis变形)
序列变换 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- 51Nod 欢乐手速场1 B 序列变换[容斥原理 莫比乌斯函数]
序列变换 alpq654321 (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 lyk有两序列a和b. lyk想知道存在多少对x,y,满足以下两个条件. 1:gcd( ...
- 二分搜索 2015百度之星初赛1 HDOJ 5248 序列变换
题目传送门 /* 二分搜索:在0-1e6的范围找到最小的max (ai - bi),也就是使得p + 1 <= a[i] + c or a[i] - c 比赛时以为是贪心,榨干智商也想不出来:( ...
- luogu P3411 序列变换
链接 P3411 序列变换 如果要最小化答案,那么就最大化不移动的数. 那么不移动的子序列一定是最后答案的一段连续区间,而移动的数我们是一定有办法把他们还原的. 设\(f_{i}\)表示\(i\)点的 ...
随机推荐
- 前后端分离构架 与 json ajax简介
前后端分离 传统开发方式 曾几何时,JSP和Servlet为Java带来了无限风光,一时间大红大紫,但随着互联网的不断发展,这样的开发方式逐渐显露其弊端,在移动互联网炙手可热的今天,应用程序对于后台服 ...
- null值与非null只比较大小时,只会返回false
DateTime? time=null; DateTime now=DateTime.Now; null值与非null只比较大小时,只会返回false 无论是大于比较还是小于比较还是等于,都会返回fa ...
- 堆(Heap)和栈(Stack)
详细可以查看这篇文章:https://www.cnblogs.com/qingtianMo/p/5255121.html 栈保存代码执行(调用)的路径,堆负责保存对象(数据) 栈相当于摞盒子,进入一个 ...
- input标签中的id和name的区别
做网站很久了,但到现在还没有搞明白input中name和id的区别,最近学习jquery,又遇到这个问题,就在网上搜集资料.看到这篇,就整理出来,以备后用. 可 以说几乎每个做过Web开发的人都问过, ...
- 进程管理 supervisor
背景知识: supervisor是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启. 它是通过fork/exec的方式把这 ...
- 【C语言】请输入一个n(n<=10)并输出一个n行n列的杨辉三角
应用二维数组的知识 杨辉三角特点: 1.第一列和对角线的元素全部为1 2.其他元素等于上一行的当前列的值和上一行中当前列前边一列的值之和 #include<stdio.h> #define ...
- Python记:通用的序列操作之成员资格(听起来倒是有些抽象的!)
______________________________永远守护这一尘不染的真心! 要检查特定的值是否包含在序列中,可使用运算符in.它检查是否满足指定的条件,并返回相应的值:满足时返回True, ...
- bugku 散乱密码
BugkuCTF_加密_散乱的密文 WriteUp image.png lf5{ag024c483549d7fd@@1} 一张纸条上凌乱的写着2 1 6 5 3 4 以前做过这种类型的 既然是凌乱 ...
- Nuxt的路由动画效果
Nuxt.js提供两种方法为路由提供动画效果,一种是全局的,一种是针对单独页面的 全局动画默认使用page来进行设置,例如现在我们为每个页面都设置一个进入和退出时的渐隐渐现的效果.我们可以先在根目录的 ...
- 用 async/await 来处理异步(转)
昨天看了一篇vue的教程,作者用async/ await来发送异步请求,从服务端获取数据,代码很简洁,同时async/await 已经被标准化,是时候学习一下了. 先说一下async的用法,它作为一个 ...