题目描述

你要购买 \(m\) 种物品各一件,一共有 \(n\) 家商店,你到第 \(i\) 家商店的路费为 \(d[i]\),在第 \(i\) 家商店购买第 \(j\) 种物品的费用为 \(c[i][j],\)求最小总费用。

输入格式

第一行包含两个正整数\(n,m\)(\(1\leq n\leq 100,1\leq m\leq 16\)),表示商店数和物品数。

接下来 \(n\) 行,每行第一个正整数 \(d[i]\)(\(1\leq d[i]\leq 1000000\))表示到第 \(i\) 家商店的路费;接下来 \(m\) 个正整数,依次表示 \(c[i][j]\)(\(1\leq c[i][j]\leq 1000000\))。

输出格式

一个正整数,即最小总费用。

输入输出样例

输入 #1

3 4
5 7 3 7 9
2 1 20 3 2
8 1 20 1 1

输出 #1

16

说明/提示

样例解释

在第一家店买 2 号物品,在第二家店买剩下的物品。

题解

设\(dp[i][S]\)表示前\(i\)个商店,已买物品的集合为\(S\)的最小费用。

则有:\(dp[i][S | (1 << (j - 1))] = min(dp[i][S | (1 << (j - 1))], dp[i][S]+c[i][j])\)。

其中,\(j\)为当前要买的物品,\(S\)为枚举的子集,\(i\)为枚举的商店。

每次初始化\(dp[i][S]=dp[i-1][S]+d[i]\)。

每次做完\(DP\)后更新\(dp[i][S]=min(dp[i][S],dp[i-1][S])\),记录前缀最小值。

答案为\(dp[n][(1<< m)-1]\)。

代码

/********************************
Author: csxsl
Date: 2019/10/24
Language: C++
Problem: BZOJ4145
********************************/
#include <bits/stdc++.h>
#define itn int
#define gI gi using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} inline long long gl()
{
long long f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} const int maxn = 101, maxm = (1 << 16) + 1; int n, m, d[maxn], c[maxn][17];
long long dp[maxn][maxm]; int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), m = gi();
for (int i = 1; i <= n; i+=1)
{
d[i] = gi();
for (int j = 1; j <= m; j+=1) c[i][j] = gi();
}
//输入
memset(dp, 0x7f, sizeof(dp));
dp[0][0] = 0;//初始化
for (int i = 1; i <= n; i+=1)//枚举商店
{
for (int S = 0; S < (1 << m); S+=1) dp[i][S] = dp[i - 1][S] + d[i];//先初始化dp[i][S]
for (int j = 1; j <= m; j+=1)//枚举物品
for (int S = 0; S < (1 << m); S+=1)//枚举子集
if (!(S & (1 << (j - 1))))//如果还没有买j物品
dp[i][S | (1 << (j - 1))] = min(dp[i][S | (1 << (j - 1))], dp[i][S] + c[i][j]);//转移
for (int S = 0; S < (1 << m); S+=1) dp[i][S] = min(dp[i][S], dp[i - 1][S]);//更新
}
printf("%lld\n", dp[n][(1 << m) - 1]);//输出
return 0;
}

题解【BZOJ4145】「AMPPZ2014」The Prices的更多相关文章

  1. [题解] [BZOJ4144] 「AMPPZ2014」Petrol

    题面 怎么是权限题啊 题解 有一次考过, 但是不记得了 如果每个点都是加油站的话, 这道题就是货车运输 考虑如何转化 我们可以设

  2. 「AMPPZ2014」The Prices

    传送门 Luogu团队题链接 解题思路 看到 \(m\) 这么小,马上想到状压 \(\text{DP}\). 设 \(dp[i][j]\) 表示在前 \(i\) 家商店中已买商品的状态为 \(j\) ...

  3. 【题解】「P6832」[Cnoi2020]子弦

    [题解]「P6832」[Cnoi2020]子弦第一次写月赛题解( 首先第一眼看到这题,怎么感觉要用 \(\texttt{SAM}\) 什么高科技的?结果一仔细读题,简单模拟即可. 我们不难想出,出现最 ...

  4. 【题解】「UVA681」Convex Hull Finding

    更改了一下程序的错误. Translation 找出凸包,然后逆时针输出每个点,测试数据中没有相邻的边是共线的.多测. Solution 首先推销一下作者的笔记 由此进入>>> ( ...

  5. 【题解】「SP34013」SEUG - Seetha’s Unique Game

    这道题一看就是 贪心 . 使放的石头少,就需要石头大. 那么就可以将石头重量排序,从大到小. 这道题里面看似东西很多,但是很多东西都是没有用的.比如说:箱子的长和宽,因为题目中说「每加一个石头,水的高 ...

  6. 【题解】「AT4303」[ABC119D] Lazy Faith

    AT4303 [ABC119D] Lazy Faith[题解][二分] AT4303 translation 有 \(a\) 个点 \(s\),有 \(b\) 个点 \(t\),问从点 \(x\) 出 ...

  7. 【题解】「AT4266」[ABC113B] Palace

    AT4266 [ABC113B] Palace 水题解*n translation 有 \(n\) 个地方,第 \(i\) 个地方的海拔为 \(H_i\),该地方的温度为 \(T-H_i \times ...

  8. 【题解】「CF363A」Soroban

    哎呀呀,咕值要掉光了,赶快水篇题解( solution 这题就是个纯模拟,首先我们根据输出样例看一下输出算盘的规则. 看数最大的 720 ,我们发现,输出的算盘张这样(之所以我不用代码框而用 \(\K ...

  9. 「AMPPZ2014」The Captain

    传送门: 这是一道bzoj权限题 Luogu团队题链接 解题思路 直接连边的话边数肯定会爆炸,考虑减少边数. 我们画出坐标系,发现一个东西: 对于两个点 \(A,B\),\(|x_A-y_A|\) 可 ...

随机推荐

  1. cat基础用法

    Linux中的cat命令连接文件并打印到标准输出设备上(通常是shell).cat的最常见用法之一是显示文件,还可以即时创建文件,并可以直接在终端上进行基本编辑. 创建文件 使用cat命令创建文件,请 ...

  2. P3206 [HNOI2010]城市建设 [线段树分治+LCT维护动态MST]

    Problem 这题呢 就边权会在某一时刻变掉-众所周知LCT不支持删边的qwq- 所以考虑线段树分治- 直接码一发 如果 R+1 这个时间修改 那就当做 [L,R] 插入了一条边- 然后删的边和加的 ...

  3. PAT (Basic Level) Practice (中文)1076 Wifi密码 (15 分)

    下面是微博上流传的一张照片:“各位亲爱的同学们,鉴于大家有时需要使用 wifi,又怕耽误亲们的学习,现将 wifi 密码设置为下列数学题答案:A-1:B-2:C-3:D-4:请同学们自己作答,每两日一 ...

  4. vue常用插件之视频播放(rtmp m3u8)

    vue-video-player(5.0.2) 最近我的项目做了一个监控视屏的显示,后台提供的视屏格式是rtmp 后来又改为m3u8,没成功,原因是占用内存过大,所以取消了这种方式 一.安装 npm ...

  5. shell-快速抽样

    有时我们需要对文件进行抽样,这时候只需要一个shell命令就可以抽取固定行数的样本:shuf shuf -n $m $file 参数有2: -n: 抽样行数 -r: 是否重复

  6. 第一章 - HTTP概述

    1.1 HTTP——因特网的多媒体信使 可靠的数据传输协议 1.2 Web客户端和服务器 Web内容都是存储在Web服务器上的,使用HTTP协议,因此也称为HTTP服务器 HTTP客户端发出请求,提供 ...

  7. Pi和e的积分

    Evaluate integral $$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}$$ Well,I think we have $$\int_{0}^{ ...

  8. Eclipse中配置Tomcat容器

    Tomcat 安装与配置 Tomcat是Apache 软件基金会(Apache Software Foundation)核心项目之一,支持最新的Servlet 和JSP 规范.因为Tomcat 技术先 ...

  9. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

  10. nodejs使用promise实现sleep

    个人博客 地址:http://www.wenhaofan.com/article/20181120180225 let sleep = function (delay) { return new Pr ...