T1 tom

题意:

考虑一定是属于\(a\)的在一坨,属于\(b\)的在一坨,找到这条连接\(a\)和\(b\)的边,然后分别直接按\(dfs\)序染色即可

注意属于\(a\)的连通块或属于\(b\)的连通块可能在\(dfs\)树上不都体现为一棵完整的子树,所以需要都判断一下

#include<bits/stdc++.h>
#define N (200000 + 10)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + (c ^ 48); c = getchar();}
return cnt * f;
}
int n, a, b, x, y, fa[N], siz[N], id[N], val;
int first[N], to[N], nxt[N], tot;
void add (int x, int y) {nxt[++tot] = first[x], first[x] = tot, to[tot] = y;}
void get_siz(int x, int father) {
siz[x] = 1; fa[x] = father;
for (register int i = first[x]; i; i = nxt[i]) {
int v = to[i];
if (v == father) continue;
get_siz(v, x), siz[x] += siz[v];
}
}
void print(int x, int fa, int d) {
for (register int i = first[x]; i; i = nxt[i]) {
int v = to[i];
if (v == fa) continue;
print(v, x, d);
}
val += d;
id[x] = val;
}
void work () {
bool ok = 0;
get_siz(1, 0);
for (register int i = 1; i <= n; ++i)
if (siz[i] == a) {
val = 0;
print(i, fa[i], 1);
val = 0;
print(fa[i], i, -1);
ok = 1;
} else if (siz[i] == b) {
val = 0;
print(i, fa[i], -1);
val = 0;
print(fa[i], i, 1);
ok = 1;
}
if (!ok) puts("-1");
else for (register int i = 1; i <= n; ++i) printf("%d ", id[i]);
putchar('\n');
}
int main() {
n = read(), a = read(), b = read();
for (register int i = 1; i <= n - 1; ++i) {
x = read(), y = read();
add(x, y), add(y, x);
}
work();
return 0;
}

T2 Jerry

首先能发现一个性质,括号结构最多嵌套两层

如果有三层的嵌套可以这样化简

( ( ( ) ) )



( ( ) ( ) )

符号反三层和反一层等价

设\(f[i][0~2]\)表示当前处理到第\(i\)位,前面有\(0/1/2\)个未配对的左括号

在当前数\(>0\)时状态转移考虑补右括号,\(<0\)时考虑先强行在“-”后补一个左括号(如果对答案不优,自然会在后面的更新中去掉:-(a) + b),再进行转移

具体方程看代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
inline int read() {
int cnt = 0, f= 1;char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + (c ^ 48); c = getchar();}
return cnt * f;
}
int T, n, a[500010], dp[500010][3];
signed main() {
T = read();
while (T--) {
n = read();
for (register int i = 1; i <= n; ++i) a[i] = read();
dp[0][0] = 0, dp[0][1] = dp[0][2] = -1e18;
for (register int i = 1; i <= n; ++i)
if (a[i] > 0) {
dp[i][0] = max(max(dp[i - 1][0] + a[i], dp[i - 1][1] + a[i]), dp[i - 1][2] + a[i]);
dp[i][1] = max(dp[i - 1][1] - a[i], dp[i - 1][2] - a[i]);
dp[i][2] = dp[i - 1][2] + a[i];
} else {
dp[i][0] = -1e18;
dp[i][1] = max(max(dp[i - 1][0] + a[i], dp[i - 1][1] + a[i]), dp[i - 1][2] + a[i]);
dp[i][2] = max(dp[i - 1][1] - a[i], dp[i - 1][2] - a[i]);
}
printf("%lld\n", max(max(dp[n][0], dp[n][1]), dp[n][2]));
}
return 0;
}

T3太麻烦了不想写,先咕了

2019/10/24 CSP-S 模拟的更多相关文章

  1. 2019.10.24 CSP%你赛第二场d1t3

    题目描述 Description 精灵心目中亘古永恒的能量核心崩溃的那一刻,Bzeroth 大陆的每个精灵都明白,他们的家园已经到了最后的时刻.就在这危难关头,诸神天降神谕,传下最终兵器——潘少拉魔盒 ...

  2. 2019/10/17 CSP模拟 总结

    T1 补票 Ticket 没什么好说的,不讲了 T2 删数字 Number 很后悔的是其实考场上不仅想出了正解的方程,甚至连优化都想到了,却因为码力不足只打了\(O(n^2)\)暴力,甚至还因为细节挂 ...

  3. 2019.10.26 CSP%您赛第三场

    \(CSP\)凉心模拟^_^ --题源\(lqx.lhc\)等各位蒟蒻 题目名称 比赛 传递消息 开关灯 源文件名 \(competition.cpp\) \(message.cpp\) \(ligh ...

  4. 2019.10.15 CSP初赛知识点整理

    初赛需要的知识点整理如下: (1)计算机的硬件组成与基本常识 (2)单位/进制的转换 (3)进制/逻辑运算相关 (4)概率与期望 (5)排序的各种性质 (6)简单数据结构的使用(栈.队列.链表等) ( ...

  5. 2019.10.28 CSP%您赛第四场t3

    我写不动前两个了. 原谅一下. ____________________________________________________________________________________ ...

  6. 2019.10.29 CSP%您赛第四场t2

    我太菜了我竟然不会分层图最短路 ____________________________________________________________________________________ ...

  7. Alpha冲刺(1/10)——2019.4.24

    所属课程 软件工程1916|W(福州大学) 作业要求 Alpha冲刺(1/10)--2019.4.24 团队名称 待就业六人组 1.团队信息 团队名称:待就业六人组 团队描述:同舟共济扬帆起,乘风破浪 ...

  8. 2019.11.9 csp-s 考前模拟

    2019.11.9 csp-s 考前模拟 是自闭少女lz /lb(泪奔 T1 我可能(呸,一定是唯一一个把这个题写炸了的人 题外话: 我可能是一个面向数据编程选手 作为一个唯一一个写炸T1的人,成功通 ...

  9. 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组

    2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...

随机推荐

  1. spark集群进入 bin 下面目录./spark-shell 出现Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    spark集群启动的时候可以正常,进入 ./spark-shell 就会出现如下错误 配置文件:spark-env.sh export JAVA_HOME=/usr/java/jdk1.7.0_51e ...

  2. 批量调用百度地图API获取地址经纬度坐标

    1 申请密匙 注册百度地图API:http://lbsyun.baidu.com/index.php?title=webapi 点击左侧 “获取密匙” ,经过填写个人信息.邮箱注册等,成功之后在开放平 ...

  3. 9款很棒的网页绘制图表JavaScript框架脚本

    推荐9款很棒的可在网页中绘制图表的JavaScript脚本,这些有趣的JS脚本可以帮助你快速方便的绘制图表(线.面.饼.条…),其中包括jQuery.MooTools.Prototype和一些其它的J ...

  4. git mac安装

    1.git安装包安装 去官网下载最行的git版本 安装即可 https://git-scm.com/download/mac 但是一般的git仓库需要sshkey来做验证 下面奉上具体的命令: 需要生 ...

  5. mysql 06章_分组查询和链接查询

    一.分组查询 在进行查询时,通常需要按某个或某些字段进行一些统计,因此就需要使用分组查询,但分组后通常需要与聚合函数使用,分组才有意义. 语法:SELECT <字段列表|*> FROM 表 ...

  6. docker ps -a

    1 pwd 2 mkdir data 3 ll 4 uname -n 5 cd data/ 6 ll 7 pwd 8 ll 9 wget -N --no-check-certificate https ...

  7. Leetcode208. Implement Trie (Prefix Tree)实现Trie(前缀树)

    实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie(); trie.insert(" ...

  8. Android App上架流程

    想要把APP上架到应用市场都要先注册开发者账号才可以.这里的方法包括注册帐号和后期上架及一些需要注意的问题.注意:首次提交应用绝对不能随便删除,否则后面再提交会显示应用APP冲突,会要求走应用认领流程 ...

  9. WebAPI介绍

    Web API介绍 API的概念 API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访 ...

  10. OSS支持IPV6/IPV4双栈访问域名

    摘要: OSS开放IPv6/IPv4双栈域名,可同时支持IPv6/IPv4客户端的访问,支持下一代互联网技术IPv6,可服务海量物理网设备连接等应用场景. 下一代IP协议 IPv4地址已接近枯竭,被誉 ...