51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)
题目
推导
∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) ∑i=1n∑j=1nlcm(i,j)
=∑i=1n∑j=1nijgcd(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)}=∑i=1n∑j=1ngcd(i,j)ij
=∑i=1nd−1∑i=1n∑j=1nij[gcd(i,j)==d]=\sum_{i=1}^{n}d^{-1}\sum_{i=1}^{n}\sum_{j=1}^{n}ij[gcd(i,j)==d]=∑i=1nd−1∑i=1n∑j=1nij[gcd(i,j)==d]
=∑i=1nd∑i=1⌊nd⌋∑j=1⌊nd⌋ij[gcd(i,j)==1]=\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}ij[gcd(i,j)==1]=∑i=1nd∑i=1⌊dn⌋∑j=1⌊dn⌋ij[gcd(i,j)==1]
=∑i=1nd∑i=1⌊nd⌋i∑j=1⌊nd⌋j[gcd(i,j)==1]=\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}j[gcd(i,j)==1]=∑i=1nd∑i=1⌊dn⌋i∑j=1⌊dn⌋j[gcd(i,j)==1]
=∑i=1nd(2∑i=1⌊nd⌋i∑j=1ij[gcd(i,j)==1]−1)=\sum_{i=1}^{n}d(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{i}j[gcd(i,j)==1]-1)=∑i=1nd(2∑i=1⌊dn⌋i∑j=1ij[gcd(i,j)==1]−1)
=∑i=1nd(2∑i=1⌊nd⌋iiφ(i)+[i==1]2−1)=\sum_{i=1}^{n}d(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\frac{i\varphi(i)+[i==1]}{2}-1)=∑i=1nd(2∑i=1⌊dn⌋i2iφ(i)+[i==1]−1)
=∑i=1nd∑i=1⌊nd⌋i2φ(i)=\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i^2\varphi(i)=∑i=1nd∑i=1⌊dn⌋i2φ(i)
子问题:
求∑i=1ni2φ(i)\sum_{i=1}^{n}i^2\varphi(i)∑i=1ni2φ(i)
令f(i)=i2φ(i)f(i)=i^2\varphi(i)f(i)=i2φ(i)
使用狄利克雷卷积,卷一个g(i)=i2g(i)=i^2g(i)=i2
那么:
∑i=1n(f∗g)(i)~~~~\sum_{i=1}^{n}(f*g)(i) ∑i=1n(f∗g)(i)
=∑i=1n∑d∣if(d)g(id)=\sum_{i=1}^{n}\sum_{d|i}^{}f(d)g(\frac{i}{d})=∑i=1n∑d∣if(d)g(di)
=∑i=1n∑d∣id2φ(d)(id)2=\sum_{i=1}^{n}\sum_{d|i}^{}d^2\varphi(d)(\frac{i}{d})^2=∑i=1n∑d∣id2φ(d)(di)2
=∑i=1ni2∑d∣iφ(d)=\sum_{i=1}^{n}i^2\sum_{d|i}^{}\varphi(d)=∑i=1ni2∑d∣iφ(d)
=∑i=1ni3=\sum_{i=1}^{n}i^3=∑i=1ni3
=n2(n+1)24=\frac{n^2(n+1)^2}{4}=4n2(n+1)2
又因为:
∑i=1n∑d∣id2φ(d)(id)2~~~~\sum_{i=1}^{n}\sum_{d|i}^{}d^2\varphi(d)(\frac{i}{d})^2 ∑i=1n∑d∣id2φ(d)(di)2
=∑i=1ni2∑d=1⌊ni⌋d2φ(d)=\sum_{i=1}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)=∑i=1ni2∑d=1⌊in⌋d2φ(d)
=∑i=2ni2∑d=1⌊ni⌋d2φ(d)+∑i=1ni2φ(i)=\sum_{i=2}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)+\sum_{i=1}^{n}i^2\varphi(i)=∑i=2ni2∑d=1⌊in⌋d2φ(d)+∑i=1ni2φ(i)
=n2(n+1)24=\frac{n^2(n+1)^2}{4}=4n2(n+1)2
所以:
∑i=1ni2φ(i)=n2(n+1)24−∑i=2ni2∑d=1⌊ni⌋d2φ(d)\sum_{i=1}^{n}i^2\varphi(i)=\frac{n^2(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)∑i=1ni2φ(i)=4n2(n+1)2−∑i=2ni2∑d=1⌊in⌋d2φ(d)
使用杜教筛将时间复杂度降到O(n23)O(n^{\frac{2}{3}})O(n32)
数学太难了QAQ
代码:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
#include<algorithm>
#define maxn 5000000
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define two 500000004
#define six 166666668
using namespace std;
inline long long getint()
{
long long num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
}
long long n;
bool not_prime[maxn+5];
int prime[maxn+5],cnt;
long long phi[maxn+5];
map<long long,long long>M;
inline void init()
{
phi[1]=1;
for(int i=2;i<=maxn;i++)
{
if(!not_prime[i])prime[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<=maxn;j++)
{
not_prime[i*prime[j]]=1;
if(i%prime[j])phi[i*prime[j]]=phi[i]*phi[prime[j]];
else{phi[i*prime[j]]=phi[i]*prime[j];break;}
}
}
for(int i=1;i<=maxn;i++)(phi[i]*=1ll*i*i%MOD)%=MOD;
for(int i=1;i<=maxn;i++)(phi[i]+=phi[i-1])%=MOD;
}
inline long long getsqr(long long x)
{return x%MOD*((x+1)%MOD)%MOD*((2*x+1)%MOD)%MOD*six%MOD;}
inline long long solve(long long x)
{
if(x<=maxn)return phi[x];
if(M.count(x))return M[x];
long long sum=x%MOD*((x+1)%MOD)%MOD*two%MOD;
(sum*=sum)%=MOD;
for(long long i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
(sum-=(getsqr(j)-getsqr(i-1))%MOD*solve(x/i)%MOD)%=MOD;
(sum+=MOD)%=MOD;
}
return M[x]=sum;
}
int main()
{
init();
n=getint();
long long sum=0;
for(long long i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
(sum+=1ll*(j+i)%MOD*(j-i+1)%MOD*two%MOD*solve(n/i)%MOD)%=MOD;
}
printf("%lld\n",sum);
}
51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)的更多相关文章
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 51nod 1220 约数之和【莫比乌斯反演+杜教筛】
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...
- 51Nod 1238 最小公倍数之和V3
题目传送门 分析: 现在我们需要求: \(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)\) \(=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
随机推荐
- 【2016常州一中夏令营Day3】
小 W 摆石子[问题描述]小 W 得到了一堆石子,要放在 N 条水平线与 M 条竖直线构成的网格的交点上.因为小 M 最喜欢矩形了,小 W 希望知道用 K 个石子最多能找到多少四边平行于坐标轴的长方形 ...
- 善用GIMP(Linux下的Photoshop),图像处理轻松又自由
善用GIMP(Linux下的Photoshop),图像处理轻松又自由 作者: 善用佳软 日期: 2013-02-16 分类: 2 图像影音 标签: GIMP, image 1. GIMP是什么? GI ...
- VMware卸载后再安装时网络连接处没有虚拟网卡
解决: 1.打开虚拟机,点击编辑,再点击虚拟网络编辑器 2.将所有的虚拟网络删除 3.删除完所有的虚拟网络之后再添加虚拟网络 4.按照自己想要的的连接方式添加上,网络连接处就会有虚拟网卡
- C语言图形界面常用函数集锦
(以下函数均应在图形方式初始之后使用(initgraph(a,b)),在win-tc中使用BGI图形程序模板时,其中已经定义有一个initgr函数,在main函数中应在执行initgr函数之后再使用这 ...
- VS2017+QT5.11.2+SeetaFace1.0/SeetaFace2.0的简单实现
SeetaFace开源引擎GitHub地址:https://github.com/seetaface/SeetaFaceEngine SeetaFace2开源引擎GitHub地址:https://gi ...
- Alibaba Cloud Toolkit 使用心得(IDEA版)
一.安装插件 确保 IntelliJ IDEA 在 2018.1 或更高版本 打开 Settings - Plugins 搜索安装 Alibaba Cloud Toolkit 二.配置环境 Deplo ...
- 日志管理-log4j与slf4j的使用
一.概述 1.log4j: Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件,甚至是套接口服务器.NT的事件记录器.UNIX Sy ...
- $POJ$3252 $Round\ Numbers$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 沉迷写博客,,,不想做题,,,$QAQ$口胡一时爽一直口胡一直爽$QAQ$ 先港下题目大意嗷$QwQ$大概就说,给定区间$[l,r]$,求区间内满足二进制 ...
- Java:Excel文件上传至后台
之前的项目中有遇到上传Excel文件的需求,简单说就是解析一个固定格式的Excel表格,然后存到数据库对应的表中,表格如下: 项目采用SSM架构,mvc模式,显而易见,这个Excel表需要拆成两个表, ...
- 图解Go语言的context了解编程语言核心实现源码
基础筑基 基于线程的编程语言中的一些设计 ThreadGroup ThreadGroup是基于线程并发的编程语言中常用的一个概念,当一个线程派生出一个子线程后通常会加入父线程的线程组(未指定线程组的情 ...