树上莫队就是把莫队搬到树上…利用欧拉序乱搞。。

子树自然是普通莫队轻松解决了

链上的话 只能用树上莫队了吧。。

考虑多种情况

[X=LCA(X,Y)]

[Y=LCA(X,Y)]

else

void dfs(int u) {
sz[u] = 1 ; rev[st[u] = ++ cnt] = u ;
for(int i = 0 ; i < G[u].size() ; i ++) {
int v = G[u][i] ;
if(v == fa[u]) { continue ; }
fa[v] = u ; dep[v] = dep[u] + 1 ;
dfs(v) ; sz[u] += sz[v] ;
if(sz[v] > sz[son[u]]) son[u] = v ;
}
rev[ed[u] = ++ cnt] = u ;
}

首先呢 \(st[lca]\leq st[x],st[lca]\leq st[y]\)

那么为了方便下面的表示都是 \(st_x < st_y\)

如果 \(x\) 不是 \((x,y)\) 的LCA 那么就GG了 额外统计 LCA 的贡献

if(lca == x) { q[i].l = st[x] ; q[i].r = st[y] ; }
else { q[i].l = ed[x] ; q[i].r = st[y] ; q[i].lca = lca ; }

大概长这个样子吧。。

  sort(q + 1 , q + Q + 1) ;
int l = 1 , r = 0 ;
for(int i = 1 ; i <= Q ; i ++) {
while(l > q[i].l) { Add(rev[-- l]) ; }
while(r < q[i].r) { Add(rev[++ r]) ; }
while(l < q[i].l) { Add(rev[l ++]) ; }
while(r > q[i].r) { Add(rev[r --]) ; }
if(q[i].lca) { Add(q[i].lca) ; }
Ans[q[i].id] = ans ;
if(q[i].lca) { Add(q[i].lca) ; }
}

SP10707 COT2 - Count on a tree II [树上莫队学习笔记]的更多相关文章

  1. SP10707 COT2 - Count on a tree II (树上莫队)

    大概学了下树上莫队, 其实就是在欧拉序上跑莫队, 特判lca即可. #include <iostream> #include <algorithm> #include < ...

  2. spoj COT2 - Count on a tree II 树上莫队

    题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的,  受益匪浅.. #include <iostream> #include < ...

  3. SPOJ COT2 Count on a tree II 树上莫队算法

    题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...

  4. [SPOJ]Count on a tree II(树上莫队)

    树上莫队模板题. 使用欧拉序将树上路径转化为普通区间. 之后莫队维护即可.不要忘记特判LCA #include<iostream> #include<cstdio> #incl ...

  5. SP10707 COT2 - Count on a tree II 莫队

    链接 https://vjudge.net/problem/SPOJ-COT2 https://www.luogu.org/problemnew/show/SP10707 思路 dfs欧拉序转化为普通 ...

  6. [SP10707]COT2 - Count on a tree II

    题目大意:有一棵$n$个节点的树,第$i$个点有一个颜色$C_i$,$m$组询问,每次问$x->y$的路径上有多少种颜色 题解:树上莫队,把树按欧拉序展开成一条链,令第$i$个节点第一次出现在序 ...

  7. SP10707 COT2 - Count on a tree II 莫队上树

    题意:求一条链 \((u,v)\) 上不同的颜色数. 我们可以求出树的出栈入栈序(or 括号序?我也不确定). 图(from attack) 然后有一个很优美的性质: 设点 \(u\) 的入栈时间为 ...

  8. SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)

    COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from  ...

  9. COT2 - Count on a tree II(树上莫队)

    COT2 - Count on a tree II You are given a tree with N nodes. The tree nodes are numbered from 1 to N ...

随机推荐

  1. HDU_1556_线段树

    http://acm.hdu.edu.cn/showproblem.php?pid=1556 直接用了技巧来做. #include<iostream> #include<cstdio ...

  2. sysbench压测自装MySQL数据库

    压测准备 测试机器 2vCPUs | 4GB | s6.large.2 CentOS 7.6 64bit 建立测试库 create database test_db character set utf ...

  3. Vmware 6.5:vmware vm高可用-vSphere HA & Fault Tlerance

    目录 vmware HA介绍 服务器添加存储,将存储挂载到服务器上 vcenter安装配置 群集配置 故障迁移测试 下载地址:百度云 参考文档: vmware HA介绍 vmware vm高可用至少需 ...

  4. SpringBoot学习笔记 文件访问映射

    通过SpringBoot可以把磁盘内所有的文件都访问到 有一张图片存放在 E://images/acti/123.jpg import org.springframework.context.anno ...

  5. JumpServer部署与管理

    一.JumpServer 堡垒机概述 JumpServer由Python/Django进行开发.使用GNU GPL v2.0开源协议.也是全球首款完全开源的堡垒机.同时配备了业界领先的Web Term ...

  6. Django请求过程

  7. A water problem 大数取余。

    A water problem Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. 小白学 Python 数据分析(8):Pandas (七)数据预处理

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  9. vue中子组件触发父组件的方法

    网上找了几种方法,下面这两种最实用,最明了 方法一:父组件方法返回是字符串或数组时用这种方法 子组件: <template> <button @click="submit& ...

  10. 秘钥分割-Shamir秘钥分割门限方案

    精选: 1.问题的提出 2.需求的抽象: 有一个秘钥S,转换成另一种数据数据形式,分配给12个人(s1,s2,.......,s12),使得任意3个人的数据拼凑在一起就可以反向计算出秘钥S. 3.解决 ...