P3089 [USACO13NOV]POGO的牛Pogo-Cow

题目描述

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down.

To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target.

Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

FJ给奶牛贝西的脚安装上了弹簧,使它可以在农场里快速地跳跃,但是它还没有学会如何降低速度。

FJ觉得让贝西在一条直线的一维线路上进行练习,他在不同的目标点放置了N (1 <= N <= 1000)个目标点,目标点i在目标点x(i),该点得分为p(i)。贝西开始时可以选择站在一个目标点上,只允许朝一个方向跳跃,从一目标点跳到另外一个目标点,每次跳跃的距离至少和上一次跳跃的距离相等,并且必须跳到一个目标点。

每跳到一个目标点,贝西可以拿到该点的得分,请计算他的最大可能得分。

输入输出格式

输入格式:

  • Line 1: The integer N.

  • Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

输出格式:

  • Line 1: The maximum number of points Bessie can receive.

输入输出样例

输入样例#1: 复制

6

5 6

1 1

10 5

7 6

4 8

8 10

输出样例#1: 复制

25

说明

There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

题解

比较神奇的单调队列优化。

貌似是利用了单调性并没有利用单调队列?

先来考虑\(O(n^3)\)

\(f[i][j]=max(f[j][k]+ch[i].p)\)

三重循坏枚举点再判断是否可以转移。

好现在我们来看一下怎么优化。

对于一个中间点 \(j\) ,它的左边 \(i\) 和 右边 \(k\) 分别满足

当 \(i\) 从 \(j+1\) 到 \(n\) 的时候,\(k\) 的 \(j-1\) 到 \(k\) 的范围是共用的。

\(why?\)因为我们的距离一开始已经排序了。所以 \(k\) 和 \(i\) 的总转移加起来为\(O(n)\)。

这时候我们就只要记录一下当前状态的最大值就可以了。

Code

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=1005;
int f[N][N];
int n,ans;
struct node{
int x,p;
}ch[N];
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} bool cmp(node a,node b){
return a.x<b.x;
} int main(){
n=read();
for(int i=1;i<=n;i++)ch[i].x=read(),ch[i].p=read();
sort(ch+1,ch+n+1,cmp);
for(int j=1;j<=n;j++){
int k=j-1,sum=ch[j].p;
for(int i=j+1;i<=n;i++){
while(k&&(ch[i].x-ch[j].x>=ch[j].x-ch[k].x))
sum=max(sum,f[j][k]),k--;
f[i][j]=max(f[i][j],sum+ch[i].p);
ans=max(ans,f[i][j]);
}
}
for(int j=n;j>=1;j--){
int k=j+1,sum=ch[j].p;
for(int i=j-1;i>=1;i--){
while(k<=n&&(ch[j].x-ch[i].x>=ch[k].x-ch[j].x))
sum=max(sum,f[j][k]),k++;
f[i][j]=max(f[i][j],sum+ch[i].p);
ans=max(ans,f[i][j]);
}
}
cout<<ans<<endl;
return 0;
}

[luogu] P3089 [USACO13NOV]POGO的牛Pogo-Cow的更多相关文章

  1. P3089 [USACO13NOV]POGO的牛Pogo-Cow

    P3089 [USACO13NOV]POGO的牛Pogo-Cow FJ给奶牛贝西的脚安装上了弹簧,使它可以在农场里快速地跳跃,但是它还没有学会如何降低速度. FJ觉得让贝西在一条直线的一维线路上进行练 ...

  2. DP【洛谷P3089】 [USACO13NOV]POGO的牛Pogo-Cow

    [洛谷P3089] [USACO13NOV]POGO的牛Pogo-Cow FJ给奶牛贝西的脚安装上了弹簧,使它可以在农场里快速地跳跃,但是它还没有学会如何降低速度. FJ觉得让贝西在一条直线的一维线路 ...

  3. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  4. bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic

    P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...

  5. P3014 [USACO11FEB]牛线Cow Line && 康托展开

    康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...

  6. bzoj1612 / P2419 [USACO08JAN]牛大赛Cow Contest(Floyd)

    P2419 [USACO08JAN]牛大赛Cow Contest Floyd不仅可以算最短路,还可以处理点之间的关系. 跑一遍Floyd,处理出每个点之间是否有直接或间接的关系. 如果某个点和其他$n ...

  7. 【洛谷】2990:[USACO10OPEN]牛跳房子Cow Hopscotch【单调队列优化DP】

    P2990 [USACO10OPEN]牛跳房子Cow Hopscotch 题目描述 The cows have reverted to their childhood and are playing ...

  8. 洛谷——P2952 [USACO09OPEN]牛线Cow Line

    P2952 [USACO09OPEN]牛线Cow Line 题目描述 Farmer John's N cows (conveniently numbered 1..N) are forming a l ...

  9. P2419 [USACO08JAN]牛大赛Cow Contest

    P2419 [USACO08JAN]牛大赛Cow Contest 题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently number ...

随机推荐

  1. 【hiho一下 第十周】后序遍历

    [题目链接]:http://hihocoder.com/problemset/problem/1049 [题意] [题解] 前序遍历的第一个节点; 肯定是整颗树的头结点; 然后在中序遍历中; 得到这个 ...

  2. NEFU 118

    其实一道公式题: n!中素数i的幂为: [n/i]+[n/i^2]+[n/i^3]+[n/i^4]+...... #include <iostream> #include <cstd ...

  3. FZU Problem 1853 Number Deletion

    Problem 1853 Number Deletion Accept: 80    Submit: 239 Time Limit: 1000 mSec    Memory Limit : 32768 ...

  4. Inside ARC — to see the code inserted by the compiler

    前言 这是我在我们技术团队所做的一次分享,稍作改动放到博客上来. 我们技术团队会不定期(一般一个月1~2次)做技术分享,对我们团队有兴趣的能够私信我. 下面是正文. 这里的主题是"Insid ...

  5. 精美viso制图(1)

    office组件中的viso是一款十分强大的绘图工具,在绘制流程图.结构框图时显得十分方便,这里将我自己绘制的一些viso图(大部分都是用在我自己的论文中的)与大家分享一把. 1.深度学习训练流程图 ...

  6. ELF文件格式定义

    ELF(Executable and Linking Format)是一种对象文件的格式,用于定义不同类型的对象文件(Object files)中都放了什么东西.以及都以什么样的格式去放这些东西.它自 ...

  7. js 预加载图片image()函数

    创建一个Image对象:var a=new Image();    定义Image对象的src: a.src=”xxx.gif”;    这样做就相当于给浏览器缓存了一张图片. 图像对象: 建立图像对 ...

  8. 限制textfield的文字长度

    -(BOOL)textField:(UITextField *)textField shouldChangeCharactersInRange:(NSRange)range replacementSt ...

  9. caffe遇到的错误记录

    Caffe——一个多么方便的深度学习工具,为啥安装和使用起来的bug这么多呢!把痛苦的记忆记录下来,把希望留给后人. Caffe的万丈高楼(Net)是按照我们的设计图纸(prototxt),用Blob ...

  10. Android 多个APK共享数据

    Android给每个APK进程分配一个单独的用户空间,其manifest中的userid就是对应一个Linux用户(Android 系统是基于Linux)的.所以不同APK(用户)间互相访问数据默认是 ...