netty4线程模型

ServerBootstrap http示例

        // Configure the server.
EventLoopGroup bossGroup = new EpollEventLoopGroup(1);
EventLoopGroup workerGroup = new EpollEventLoopGroup(); try {
ServerBootstrap b = new ServerBootstrap();
b.channel(EpollServerSocketChannel.class);
b.option(ChannelOption.SO_BACKLOG, 1024);
b.childOption(ChannelOption.ALLOCATOR, PooledByteBufAllocator.DEFAULT);
b.group(bossGroup, workerGroup)
// .handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new HttpHelloWorldServerInitializer(sslCtx)); Channel ch = b.bind(PORT).sync().channel();
/* System.err.println("Open your web browser and navigate to " +
(SSL? "https" : "http") + "://127.0.0.1:" + PORT + '/');*/
ch.closeFuture().sync();
} finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}

绑定过程:

 private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
} if (regFuture.isDone()) {
// At this point we know that the registration was complete and successful.
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
// Registration future is almost always fulfilled already, but just in case it's not.
final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
Throwable cause = future.cause();
if (cause != null) {
// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
// IllegalStateException once we try to access the EventLoop of the Channel.
promise.setFailure(cause);
} else {
// Registration was successful, so set the correct executor to use.
// See https://github.com/netty/netty/issues/2586
promise.executor = channel.eventLoop();
}
doBind0(regFuture, channel, localAddress, promise);
}
});
return promise;
}
}

初始化过程:

final ChannelFuture initAndRegister() {
final Channel channel = channelFactory().newChannel();
try {
init(channel);
} catch (Throwable t) {
channel.unsafe().closeForcibly();
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
} ChannelFuture regFuture = group().register(channel);
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
} // If we are here and the promise is not failed, it's one of the following cases:
// 1) If we attempted registration from the event loop, the registration has been completed at this point.
// i.e. It's safe to attempt bind() or connect() now because the channel has been registered.
// 2) If we attempted registration from the other thread, the registration request has been successfully
// added to the event loop's task queue for later execution.
// i.e. It's safe to attempt bind() or connect() now:
// because bind() or connect() will be executed *after* the scheduled registration task is executed
// because register(), bind(), and connect() are all bound to the same thread. return regFuture;
}

ServerBootStrap的初始化过程:

@Override
void init(Channel channel) throws Exception {
final Map<ChannelOption<?>, Object> options = options();
synchronized (options) {
channel.config().setOptions(options);
} final Map<AttributeKey<?>, Object> attrs = attrs();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
@SuppressWarnings("unchecked")
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
} ChannelPipeline p = channel.pipeline(); final EventLoopGroup currentChildGroup = childGroup;
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
} p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(Channel ch) throws Exception {
ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = handler();
if (handler != null) {
pipeline.addLast(handler);
}
pipeline.addLast(new ServerBootstrapAcceptor(
currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}

接收器ServerBootstrapAcceptor

@Override
@SuppressWarnings("unchecked")
public void channelRead(ChannelHandlerContext ctx, Object msg) {
final Channel child = (Channel) msg; child.pipeline().addLast(childHandler); for (Entry<ChannelOption<?>, Object> e: childOptions) {
try {
if (!child.config().setOption((ChannelOption<Object>) e.getKey(), e.getValue())) {
logger.warn("Unknown channel option: " + e);
}
} catch (Throwable t) {
logger.warn("Failed to set a channel option: " + child, t);
}
} for (Entry<AttributeKey<?>, Object> e: childAttrs) {
child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
} try {
childGroup.register(child).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
forceClose(child, future.cause());
}
}
});
} catch (Throwable t) {
forceClose(child, t);
}
}

ThreadPerChannelEventLoopGroup实现注册

    @Override
public ChannelFuture register(Channel channel) {
if (channel == null) {
throw new NullPointerException("channel");
}
try {
EventLoop l = nextChild();
return l.register(channel, new DefaultChannelPromise(channel, l));
} catch (Throwable t) {
return new FailedChannelFuture(channel, GlobalEventExecutor.INSTANCE, t);
}
}

获取子eventLoop

    private EventLoop nextChild() throws Exception {
if (shuttingDown) {
throw new RejectedExecutionException("shutting down");
} EventLoop loop = idleChildren.poll();
if (loop == null) {
if (maxChannels > 0 && activeChildren.size() >= maxChannels) {
throw tooManyChannels;
}
loop = newChild(childArgs);
loop.terminationFuture().addListener(childTerminationListener);
}
activeChildren.add(loop);
return loop;
}

产生新子eventLoop(SingleThreadEventExecutor.java)

    /**
* Create a new instance
*
* @param parent the {@link EventExecutorGroup} which is the parent of this instance and belongs to it
* @param executor the {@link Executor} which will be used for executing
* @param addTaskWakesUp {@code true} if and only if invocation of {@link #addTask(Runnable)} will wake up the
* executor thread
*/
protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor, boolean addTaskWakesUp) {
super(parent); if (executor == null) {
throw new NullPointerException("executor");
} this.addTaskWakesUp = addTaskWakesUp;
this.executor = executor;
taskQueue = newTaskQueue();
}

其执行方法(SingleThreadEventExecutor.java):

@Override
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
} boolean inEventLoop = inEventLoop();
if (inEventLoop) {
addTask(task);
} else {
startThread();
addTask(task);
if (isShutdown() && removeTask(task)) {
reject();
}
} if (!addTaskWakesUp && wakesUpForTask(task)) {
wakeup(inEventLoop);
}
}

启动处理线程(SingleThreadEventExecutor.java):

private void startThread() {
if (STATE_UPDATER.get(this) == ST_NOT_STARTED) {
if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
doStartThread();
}
}
} private void doStartThread() {
assert thread == null;
executor.execute(new Runnable() {
@Override
public void run() {
thread = Thread.currentThread();
if (interrupted) {
thread.interrupt();
} boolean success = false;
updateLastExecutionTime();
try {
SingleThreadEventExecutor.this.run();
success = true;
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
} finally {
for (;;) {
int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this);
if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
break;
}
} // Check if confirmShutdown() was called at the end of the loop.
if (success && gracefulShutdownStartTime == 0) {
logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
"before run() implementation terminates.");
} try {
// Run all remaining tasks and shutdown hooks.
for (;;) {
if (confirmShutdown()) {
break;
}
}
} finally {
try {
cleanup();
} finally {
STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
threadLock.release();
if (!taskQueue.isEmpty()) {
logger.warn(
"An event executor terminated with " +
"non-empty task queue (" + taskQueue.size() + ')');
} terminationFuture.setSuccess(null);
}
}
}
}
});
}

其中的run方法由其子类(DefaultEventLoop,EpollEventLoop,NioEventLoop,ThreadPerChannelEventLoop)各种实现,以NioEventLoop为例:

@Override
protected void run() {
for (;;) {
boolean oldWakenUp = wakenUp.getAndSet(false);
try {
if (hasTasks()) {
selectNow();
} else {
select(oldWakenUp); // 'wakenUp.compareAndSet(false, true)' is always evaluated
// before calling 'selector.wakeup()' to reduce the wake-up
// overhead. (Selector.wakeup() is an expensive operation.)
//
// However, there is a race condition in this approach.
// The race condition is triggered when 'wakenUp' is set to
// true too early.
//
// 'wakenUp' is set to true too early if:
// 1) Selector is waken up between 'wakenUp.set(false)' and
// 'selector.select(...)'. (BAD)
// 2) Selector is waken up between 'selector.select(...)' and
// 'if (wakenUp.get()) { ... }'. (OK)
//
// In the first case, 'wakenUp' is set to true and the
// following 'selector.select(...)' will wake up immediately.
// Until 'wakenUp' is set to false again in the next round,
// 'wakenUp.compareAndSet(false, true)' will fail, and therefore
// any attempt to wake up the Selector will fail, too, causing
// the following 'selector.select(...)' call to block
// unnecessarily.
//
// To fix this problem, we wake up the selector again if wakenUp
// is true immediately after selector.select(...).
// It is inefficient in that it wakes up the selector for both
// the first case (BAD - wake-up required) and the second case
// (OK - no wake-up required). if (wakenUp.get()) {
selector.wakeup();
}
} cancelledKeys = 0;
needsToSelectAgain = false;
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
processSelectedKeys();
runAllTasks();
} else {
final long ioStartTime = System.nanoTime(); processSelectedKeys(); final long ioTime = System.nanoTime() - ioStartTime;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
} if (isShuttingDown()) {
closeAll();
if (confirmShutdown()) {
break;
}
}
} catch (Throwable t) {
logger.warn("Unexpected exception in the selector loop.", t); // Prevent possible consecutive immediate failures that lead to
// excessive CPU consumption.
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Ignore.
}
}
}
}

运行所有任务(SingleThreadEventExecutor.java)

 /**
* Poll all tasks from the task queue and run them via {@link Runnable#run()} method. This method stops running
* the tasks in the task queue and returns if it ran longer than {@code timeoutNanos}.
*/
protected boolean runAllTasks(long timeoutNanos) {
fetchFromScheduledTaskQueue();
Runnable task = pollTask();
if (task == null) {
return false;
} final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
long runTasks = 0;
long lastExecutionTime;
for (;;) {
try {
task.run();
} catch (Throwable t) {
logger.warn("A task raised an exception.", t);
} runTasks ++; // Check timeout every 64 tasks because nanoTime() is relatively expensive.
// XXX: Hard-coded value - will make it configurable if it is really a problem.
if ((runTasks & 0x3F) == 0) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
if (lastExecutionTime >= deadline) {
break;
}
} task = pollTask();
if (task == null) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
break;
}
} this.lastExecutionTime = lastExecutionTime;
return true;
}

小结

  本文从一个简单的示例程序,一步步分析netty4的线程模型,从ServerBootstrapAcceptor到SingleThreadEventExecutor的源码,环环相扣,可以根据上面的分析链理解

一个请求过来后,netty的处理流程。

netty reactor线程模型分析的更多相关文章

  1. Netty Reactor 线程模型笔记

    引用: https://www.cnblogs.com/TomSnail/p/6158249.html https://www.cnblogs.com/heavenhome/articles/6554 ...

  2. 【Netty源码分析】Reactor线程模型

    1. 背景 1.1. Java线程模型的演进 1.1.1. 单线程 时间回到十几年前,那时主流的CPU都还是单核(除了商用高性能的小机),CPU的核心频率是机器最重要的指标之一. 在Java领域当时比 ...

  3. Netty源码分析之Reactor线程模型详解

    上一篇文章,分析了Netty服务端启动的初始化过程,今天我们来分析一下Netty中的Reactor线程模型 在分析源码之前,我们先分析,哪些地方用到了EventLoop? NioServerSocke ...

  4. 面试官:Netty的线程模型可不只是主从多Reactor这么简单

    笔者看来Netty的内核主要包括如下图三个部分: 其各个核心模块主要的职责如下: 内存管理 主要提高高效的内存管理,包含内存分配,内存回收. 网通通道 复制网络通信,例如实现对NIO.OIO等底层JA ...

  5. 深入Netty逻辑架构,从Reactor线程模型开始

    本文是Netty系列第6篇 上一篇文章我们从一个Netty的使用Demo,了解了用Netty构建一个Server服务端应用的基本方式.并且从这个Demo出发,简述了Netty的逻辑架构,并对Chann ...

  6. Netty高性能之Reactor线程模型

    Netty是一个高性能.异步事件驱动的NIO框架,它提供了对TCP.UDP和文件传输的支持,作为一个异步NIO框架,Netty的所有IO操作都是异步非阻塞的,通过Future-Listener机制,用 ...

  7. Reactor 线程模型以及在netty中的应用

    这里我们需要理解的一点是Reactor线程模型是基于同步非阻塞IO实现的.对于异步非阻塞IO的实现是Proactor模型. 一 Reactor 单线程模型 Reactor单线程模型就是指所有的IO操作 ...

  8. Netty是什么,Netty为什么速度这么快,线程模型分析

    哈喽!大家好,我是小奇,一位热爱分享的程序员 小奇打算以轻松幽默的对话方式来分享一些技术,如果你觉得通过小奇的文章学到了东西,那就给小奇一个赞吧 文章持续更新 一.前言 书接上回,现在下着大雨看来是去 ...

  9. Netty IO线程模型学习总结

    Netty框架的 主要线程是IO线程.线程模型的好坏直接决定了系统的吞吐量.并发性和安全性. Netty的线程模型遵循了Reactor的基础线程模型.以下我们先一起看下该模型 Reactor线程模型 ...

随机推荐

  1. 给Linux添加新用户,新建用户,新建帐号

    给Linux添加新用户,新建用户,新建帐号 添加用户组 sudo groupadd groupname 添加用户 sudo useradd username -m -s /sbin/nologin - ...

  2. 46.Express框架 GET 方法和POST 方法

    转自:http://www.runoob.com/nodejs/nodejs-express-framework.html GET 方法 以下实例演示了在表单中通过 GET 方法提交两个参数,我们可以 ...

  3. HDU 1716 排列2

    排列2 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. Block Manager

    在Spark中,将数据抽象为Block(不论是shuffle数据,还是节点本身存储的数据),而每个driver/executor中的block都是由`BlockManager`这个类来负责管理的.对于 ...

  5. Linux网卡驱动框架及制作虚拟网卡

    1.概述 网卡驱动与硬件相关,主要负责收发网络的数据包,将上层协议传递下来的数据包以特定的媒介访问控制方式进行发送,并将接收到的数据包传递给上层协议. 网卡设备与字符设备,块设备不同,网络设备驱动程序 ...

  6. shell项目-分发系统-构建文件分发系统

    shell项目-分发系统-构建文件分发系统 需求背景对于大公司而言,肯定时不时会有网站或者配置文件更新,而且使用的机器肯定也是好多台,少则几台,多则几十甚至上百台.所以,自动同步文件是至关重要的. 实 ...

  7. POJ——T 2891 Strange Way to Express Integers

    http://poj.org/problem?id=2891 Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16849   ...

  8. [Redux-Observable && Unit Testing] Use tests to verify updates to the Redux store (rxjs scheduler)

    In certain situations, you care more about the final state of the redux store than you do about the ...

  9. actionBar-进入界面闪烁问题解决

    问题分析: 主要是因为在开启一个应用的时候,当前界面并不是第一界面,在它之前,还有一个界面启动了,这个界面的唯一目的就是启动主界面,它目的不是显示.虽然如此,但是呢,这个界面的theme因为没有做统一 ...

  10. using可以用于释放操作,相当于Dispose()

    using可以用于释放操作,相当于Dispose()