一、NAND Flash介绍和NAND Flash控制器的使用

NAND Flash在嵌入式系统中的作用,相当于PC上的硬盘

常见的Flash有NOR Flash和NAND Flash,NOR Flash上进行读取的效率非常高,但是擦除和写操作的效率很低,容量一般比较小;NAND Flash进行擦除和写操作的效率更高,并且容量更大。一般NOR Flash用于存储程序,NAND Flash用于存储数据。

1)NAND Flash的物理结构

笔者用的开发板上NAND Flash型号是K9F1G08,大小为128M,下图为它的封装和外部引脚

I/O0-I/O7        数据输入/输出

CLE        命令锁存使能

ALE        地址锁存使能

CE        芯片使能

RE        读使能

WE        写使能

WP        写保护

R/B        就绪/忙输出信号

Vcc        电源

Vss        地

N.C        不接

K9F1G08功能结构图如下

K9F1G08内部结构有下面一些功能部件

①X-Buffers Latches & Decoders:用于行地址

②X-Buffers Latches & Decoders:用于列地址

③Command Register:用于命令字

④Control Logic & High Voltage Generator:控制逻辑及产生Flash所需高压

⑤Nand Flash Array:存储部件

⑥Data Register & S/A:数据寄存器,读、写页时,数据存放此寄存器

⑦Y-Gating

⑧I/O Buffers & Latches

⑨Global Buffers

⑩Output Driver

NAND Flash 存储单元组织结构图如下:

K9F1G08容量为1056Mbit,分为65536行(页)、2112列,每一页大小为2kb,外加64字节的额外空间,这64字节的额外空间的列地址为2048-2111

命令、地址、数据都通过IO0-IO7输入/输出,写入命令、地址或数据时,需要将WE、CE信号同时拉低,数据在WE信号的上升沿被NAND FLash锁存;命令锁存信号CLE、地址锁存信号ALE用来分辨、锁存命令或地址。

K9F1G08有128MB的存储空间,需要27位地址,以字节为单位访问Flash时,需要4个地址序列

2)NAND Flash访问方法

NAND Flash硬件连接如下图:

NAND Flash和S3C2440的连线包括,8个IO引脚,5个使能信号(nWE、ALE、CLE、nCE、nRE)、1个状态引脚(R/B)、1个写保护引脚(nWP)。地址、数据和命令都是在这些使能信号的配合下,通过8个IO引脚传输。写地址、数据、命令时,nCE、nWE信号必须为低电平,它们在nWE信号的上升沿被锁存。命令锁存使能信号CLE和地址锁存使能信号ALE用来区别IO引脚上传输的是命令还是地址。

命令字及操作方法

操作NAND Flash时,先传输命令,然后传输地址,最后读写数据,这个期间要检查Flash的状态。K9F1G08容量为128MB,需要一个27位的地址,发出命令后,后面要紧跟着4个地址序列。

下图为K9F1G08的命令字

下图为K9F1G08的地址序列

K9F1G08有2112列,所以必须使用A0-A11共12位来寻址,有65535行,所以必须使用A12-A27共16位来寻址。

3)S3C2440 NAND Flash控制器介绍

NAND Flash的读写操作次序如下:

①设置NFCONF配置NAND Flash

②向NFCMD寄存器写入命令

③向NFADDR寄存器写入地址

④读写数据:通过寄存器NFSTAT检测NAND Flash的状态,在启动某个操作后,应该检测R/nB信号以确定该操作是否完成、是否成功。

下面介绍这些寄存器:

①NFCONF:配置寄存器

用来设置NAND Flash的时序参数,设置数据位宽,设置是否支持其他大小的页等。

②NFCONT:控制寄存器

用来使能NAND Flash控制器、使能控制引脚信号nFCE、初始化ECC,锁定NAND Flash等功能

③NFCMD:命令寄存器

用来发送Flash操作命令

④NFADDR:地址寄存器

用来向Flash发送地址信号

⑤NFDATA:数据寄存器

读写此寄存器启动对NAND Flash的读写数据操作

⑥NFSTAT:状态寄存器

0:busy,1:ready

二、NAND Flash控制器操作实例:读Flash

1)读NAND Flash的步骤

①设置NFCONF

在HCLK=100Mhz的情况下,TACLS=0,TWRPH0=3,TWRPH1=0,则

NFCONF = 0x300

使能NAND Flash控制器、禁止控制引脚信号nFCE,初始化ECC

NFCONT = (1<<4) | (1<<1) | (1<<0)

②操作NAND Flash前,复位

NFCONT &= ~(1<<1)        发出片选信号

NFCMD = 0xff        reset命令

然后循环查询NFSTAT位0,直到等于1,处于就绪态

最后禁止片选信号,在实际使用时再使能

NFCONT |= 0x2        禁止NAND Flash

③发出读命令

NFCONT &= ~(1<<1)        发出片选信号

NFCMD = 0        读命令

④发出地址信号

⑤循环查询NFSTAT,直到等于1

⑥连续读NFDATA寄存器,得到一页数据

⑦最后禁止NAND Flash片选信号

NFCONT |= (1<<1)

2)代码详解

本实例的目的是把一部分代码存放在NAND Flash地址4096之后,当程序启动后通过NAND Flash控制器读出代码,执行。

连接脚本 nand.lds

SECTIONS {

firtst  
0x00000000 : { head.o init.o nand.o}

second 
0x30000000 : AT(4096) { main.o }

}

head.o init.o nand.o三个文件运行地址为0,生成的镜像文件偏移地址也为0

main.0的运行地址为0x30000000,生成的镜像文件偏移地址为4096

@******************************************************************************

@ File:head.s

@ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行

@******************************************************************************

.text

.global _start

_start:

@函数disable_watch_dog, memsetup, init_nand, nand_read_ll在init.c中定义

ldr     sp, =4096               @设置堆栈

bl      disable_watch_dog       @关WATCH DOG

bl      memsetup                @初始化SDRAM

bl      nand_init               @初始化NAND Flash

@将NAND Flash中地址4096开始的1024字节代码(main.c编译得到)复制到SDRAM中

@nand_read_ll函数需要3个参数:

ldr     r0,     =0x30000000     @1. 目标地址=0x30000000,这是SDRAM的起始地址

mov     r1,     #4096           @2.  源地址   = 4096,连接的时候,main.c中的代码都存在NAND Flash地址4096开始处

mov     r2,     #2048           @3.  复���长度= 2048(bytes),对于本实验的main.c,这是足够了

bl      nand_read               @调用C函数nand_read

ldr     sp, =0x34000000         @设置栈

ldr     lr, =halt_loop          @设置返回地址

ldr     pc, =main               @b指令和bl指令只能前后跳转32M的范围,所以这里使用向pc赋值的方法进行跳转

halt_loop:

b       halt_loop

init.c 用于初始化操作
/* WOTCH DOG register */
#define 
WTCON (*(volatile unsigned long *)0x53000000)
 
/* SDRAM regisers */
#define 
MEM_CTL_BASE 0x48000000
 
void disable_watch_dog();
void memsetup();
 
/*上电后,WATCH DOG默认是开着的,要把它关掉 */
void disable_watch_dog()
{
WTCON
= 0;
}
 
/* 设置控制SDRAM的13个寄存器 */
void memsetup()
{
int 
i = 0;
unsigned long *p = (unsigned long *)MEM_CTL_BASE;
 
    /* SDRAM 13个寄存器的值 */
    unsigned long  const    mem_cfg_val[]={ 0x22011110,     //BWSCON
                                            0x00000700,     //BANKCON0
                                            0x00000700,     //BANKCON1
                                            0x00000700,     //BANKCON2
                                            0x00000700,     //BANKCON3  
                                            0x00000700,     //BANKCON4
                                            0x00000700,     //BANKCON5
                                            0x00018005,     //BANKCON6
                                            0x00018005,     //BANKCON7
                                            0x008C07A3,     //REFRESH
                                            0x000000B1,     //BANKSIZE
                                            0x00000030,     //MRSRB6
                                            0x00000030,     //MRSRB7
                                    };
 
for(; i < 13; i++)
p[i] = mem_cfg_val[i];
}
 
nand.c 用于操作nand flash
 
#define BUSY            1
 
#define NAND_SECTOR_SIZE_LP    2048        //K9F1G08使用2048+64列
#define NAND_BLOCK_MASK_LP     (NAND_SECTOR_SIZE_LP - 1)
 
typedef unsigned int S3C24X0_REG32;
 
typedef struct {
    S3C24X0_REG32   NFCONF;
    S3C24X0_REG32   NFCONT;
    S3C24X0_REG32   NFCMD;
    S3C24X0_REG32   NFADDR;
    S3C24X0_REG32   NFDATA;
    S3C24X0_REG32   NFMECCD0;
    S3C24X0_REG32   NFMECCD1;
    S3C24X0_REG32   NFSECCD;
    S3C24X0_REG32   NFSTAT;
    S3C24X0_REG32   NFESTAT0;
    S3C24X0_REG32   NFESTAT1;
    S3C24X0_REG32   NFMECC0;
    S3C24X0_REG32   NFMECC1;
    S3C24X0_REG32   NFSECC;
    S3C24X0_REG32   NFSBLK;
    S3C24X0_REG32   NFEBLK;
} S3C2440_NAND;        //此结构体存储操作NAND Flash相关寄存器
 
 
typedef struct {
    void (*nand_reset)(void);
    void (*wait_idle)(void);
    void (*nand_select_chip)(void);
    void (*nand_deselect_chip)(void);
    void (*write_cmd)(int cmd);
    void (*write_addr)(unsigned int addr);
    unsigned char (*read_data)(void);
}t_nand_chip;        //存储nand相关操作的函数地址
 
static S3C2440_NAND * s3c2440nand = (S3C2440_NAND *)0x4e000000;        //s2c2440nand控制器地址
 
static t_nand_chip nand_chip;
 
/* 供外部调用的函数 */
void nand_init(void);
void nand_read(unsigned char *buf, unsigned long start_addr, int size);
 
/* NAND Flash操作的总入口, 它们将调用S3C2440的相应函数 */
static void nand_reset(void);
static void wait_idle(void);
static void nand_select_chip(void);
static void nand_deselect_chip(void);
static void write_cmd(int cmd);
static void write_addr(unsigned int addr);
static unsigned char read_data(void);
 
/* S3C2440的NAND Flash处理函数 */
static void s3c2440_nand_reset(void);
static void s3c2440_wait_idle(void);
static void s3c2440_nand_select_chip(void);
static void s3c2440_nand_deselect_chip(void);
static void s3c2440_write_cmd(int cmd);
static void s3c2440_write_addr(unsigned int addr);
static unsigned char s3c2440_read_data(void);
 
/* S3C2440的NAND Flash操作函数 */
 
/* 复位 */
static void s3c2440_nand_reset(void)
{
    s3c2440_nand_select_chip();
    s3c2440_write_cmd(0xff);  // 复位命令
    s3c2440_wait_idle();
    s3c2440_nand_deselect_chip();
}
 
/* 等待NAND Flash就绪 */
static void s3c2440_wait_idle(void)
{
    int i;
    volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFSTAT;
    while(!(*p & BUSY))        //*p=1表示就绪,跳出循环
        for(i=0; i<10; i++);
}
 
/* 发出片选信号 */
static void s3c2440_nand_select_chip(void)
{
    int i;
    s3c2440nand->NFCONT &= ~(1<<1);
    for(i=0; i<10; i++);    
}
 
/* 取消片选信号 */
static void s3c2440_nand_deselect_chip(void)
{
    s3c2440nand->NFCONT |= (1<<1);
}
 
/* 发出命令 */
static void s3c2440_write_cmd(int cmd)
{
    volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFCMD;
    *p = cmd;
}
 
/* 发出地址 */
static void s3c2440_write_addr_lp(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR;
int col, page;
 
col = addr & NAND_BLOCK_MASK_LP;        //取得列地址
page = addr / NAND_SECTOR_SIZE_LP;        //取得行地址
*p = col & 0xff;
/* 列地址 A0~A7 */
for(i=0; i<10; i++);
*p = (col >> 8) & 0x0f; /* 列地址 A8~A11 */
for(i=0; i<10; i++);
*p = page & 0xff;
/* 行地址 A12~A19 */
for(i=0; i<10; i++);
*p = (page >> 8) & 0xff;
/* 行地址 A20~A27 */
for(i=0; i<10; i++);
*p = (page >> 16) & 0x03;
/* 行地址 A28~A29 */
for(i=0; i<10; i++);
}
 
 
/* 读取数据 */
static unsigned char s3c2440_read_data(void)
{
    volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFDATA;
    return *p;
}
 
 
/* 在第一次使用NAND Flash前,复位一下NAND Flash */
static void nand_reset(void)
{
    nand_chip.nand_reset();
}
 
static void wait_idle(void)
{
    nand_chip.wait_idle();
}
 
static void nand_select_chip(void)
{
    int i;
    nand_chip.nand_select_chip();
    for(i=0; i<10; i++);
}
 
static void nand_deselect_chip(void)
{
    nand_chip.nand_deselect_chip();
}
 
static void write_cmd(int cmd)
{
    nand_chip.write_cmd(cmd);
}
static void write_addr(unsigned int addr)
{
    nand_chip.write_addr(addr);
}
 
static unsigned char read_data(void)
{
    return nand_chip.read_data();
}
 
 
/* 初始化NAND Flash */
void nand_init(void)
{
#define TACLS   0
#define TWRPH0  3
#define TWRPH1  0
        nand_chip.nand_reset         = s3c2440_nand_reset;
        nand_chip.wait_idle          = s3c2440_wait_idle;
        nand_chip.nand_select_chip   = s3c2440_nand_select_chip;
        nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
        nand_chip.write_cmd          = s3c2440_write_cmd;
        nand_chip.write_addr         = s3c2440_write_addr_lp;
        nand_chip.read_data          = s3c2440_read_data;
 
/* 设置时序 */
        s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
        /* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
        s3c2440nand->NFCONT = (1<<4)|(1<<1)|(1<<0);
    }
    
    /* 复位NAND Flash */
    nand_reset();
}
 
 
/* 读函数 用于把nand flash中代码复制到sdram中*/
void nand_read(unsigned char *buf, unsigned long start_addr, int size)
{
    int i, j;
 
    if ((start_addr & NAND_BLOCK_MASK_LP) || (size & NAND_BLOCK_MASK_LP)) {
        return ;    /* 地址或长度不对齐 */
    }
 
 
    /* 选中芯片 */
    nand_select_chip();
 
    for(i=start_addr; i < (start_addr + size);) {
      /* 发出READ命令 */
      write_cmd(0);
 
      /* 写地址 */
      write_addr(i);
      write_cmd(0x30);
      wait_idle();
 
 
      for(j=0; j < NAND_SECTOR_SIZE_LP; j++, i++) {
          *buf = read_data();
          buf++;
      }
    }
 
    /* 取消片选信号 */
    nand_deselect_chip();
    
    return ;
}
 
main.c 很简单,点灯
 
#define
GPBCON (*(volatile unsigned long *)0x56000010)
#define
GPBDAT (*(volatile unsigned long *)0x56000014)

#define
GPB5_out (1<<(5*2))
#define
GPB6_out (1<<(6*2))
#define
GPB7_out (1<<(7*2))
#define
GPB8_out (1<<(8*2))

void  wait(unsigned long dly)
{
for(; dly > 0; dly--);
}

int main(void)
{
unsigned long i = 0;
GPBCON = GPB5_out|GPB6_out|GPB7_out|GPB8_out;
// 将LED1-4对应的GPB5/6/7/8四个引脚设为输出

GPBDAT = ~(1<<5) | ~(1<<7) | ~(1<<8);
while(1){
wait(30000);
GPBDAT = (~(i<<5));
// 根据i的值,点亮LED1-4
if(++i == 16)
i = 0;
}

return 0;
}
 
最后是Makefile
objs := head.o init.o nand.o main.o

nand.bin : $(objs)
arm-linux-ld -Tnand.lds
-o nand_elf $^
arm-linux-objcopy -O binary -S nand_elf $@
arm-linux-objdump -D -m arm  nand_elf > nand.dis

%.o:%.c
arm-linux-gcc -Wall -c -O2 -o $@ $<

%.o:%.S
arm-linux-gcc -Wall -c -O2 -o $@ $<

clean:
rm -f  nand.dis nand.bin nand_elf *.o

转自Lunix 公社

嵌入式Linux学习笔记 NAND Flash控制器的更多相关文章

  1. 嵌入式Linux学习笔记之第一阶段---基础篇

    嵌入式Linux学习分五个阶段 第一阶段: 01嵌入式环境搭建初期 02C语言语法概述 03C语言内存操作 04c语言函数 05linux基础 06gun基础 第二阶段: 01-linux之io系统编 ...

  2. 【转】嵌入式Linux学习笔记

    一  嵌入式系统定义: 应用于特定环境的硬件体系. 二  两样非常重要的能力: 1.  掌握各种新概念的能力 2.  调试的能力( 包括软件, 硬件 ) 三  需要的基础知识: 1.  操作系统理论基 ...

  3. 嵌入式Linux学习笔记(三) 字符型设备驱动--LED的驱动开发

    在成功构建了一个能够运行在开发板平台的系统后,下一步就要正式开始应用的开发(这里前提是有一定的C语言基础,对ARM体系的软/硬件,这部分有疑问可能要参考其它教程),根据需求仔细分解任务,可以发现包含的 ...

  4. 韦东山嵌入式Linux学习笔记08--中断体系结构

    中断是什么? 举个栗子, 系统怎么知道你什么时候插入鼠标这个设备? 可以有两种处理方式: 1. 查询方式: 轮询去检测是否有设备插入; 2. 中断的方式 当鼠标插入这个事件发生时, 置位某个寄存器,告 ...

  5. 韦东山嵌入式Linux学习笔记05--存储管理器

    SDRAM: 原理图如下:          jz2440 v3开发板上面用的内存芯片为钰创科技公司生产的EM63A165TS,一片内存大小为32MB大小,一共有两块,共64MB的大小. SDRAM接 ...

  6. 嵌入式Linux学习笔记(六) 上位机QT界面实现和串口通讯实现

    目录 (1).参考资料 (2).QT界面布局实现 (3).数据和操作逻辑 在上一章我们实现了下位机的协议制定,并通过串口通讯工具完成了对设备内外设(LED)的状态修改,下面就要进行上位机软件的实现了( ...

  7. 嵌入式linux学习笔记

    1.溢出:两个数相加,如果最高位的进位和此高位的进位不同,则产生溢出. 2.进位和溢出的概念不一样. 3.预取(取得是编译后得到的机器代码)-->译码-->执行 4.ARM的汇编指令长度是 ...

  8. 嵌入式Linux学习笔记(0)基础命令。——Arvin

    学习记录: 到今天为止ARM裸机开发学习进程:1.2.1-1.2.14 预科班知识Linux介绍学习进程:0.2.1-0.2.6 学习内容笔记: 学习了Linux的开发方式的优劣介绍 学习了常用文件夹 ...

  9. 韦东山嵌入式Linux学习笔记07--Nandflash

    常用的flash有两种, Norflash和Nandflash, 前几年市场上的产品比较常见的方案时Norflash和Nandflash搭配使用, 因为norflash比较昂贵,相同的容量norfla ...

随机推荐

  1. 浅析.Net数据操作机制

    举个栗子,获取新闻详情的案例. public ActionResult NewsView(int newsId) { var news = _newsService.GetNewsById(newsI ...

  2. JS实现队列效果,先进先出

    /** * [Queue] * @param {[Int]} size [队列大小] */ function Queue(size) { var list = []; //向队列中添加数据 this. ...

  3. jquery实现瀑布流效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Kinect 开发 —— 常见手势识别(下)

    划动(Swipe) 划动手势和挥手(wave)手势类似.识别划动手势需要不断的跟踪用户手部运动,并保持当前手的位置之前的手的位置.因为手势有一个速度阈值,我们需要追踪手运动的时间以及在三维空间中的坐标 ...

  5. hdp spark beeline

    thriftserver端口号10016 hdp所用端口号由10000改为10016 !connect jdbc:hive2://localhost:10016

  6. logout命令用于退出当前登录的Shell

    logout命令用于退出当前登录的Shell

  7. virmon防火墙64位正式版(暂定)公布

    ChangeLog: 2015-06-2564位版本号签名问题临时得到解决.还要致谢一下某位黑客. 支持版本号x64 Windows Vista.7.8.8.1以上等.个人仅仅在Windows7上做了 ...

  8. HDU1023 Train Problem II【Catalan数】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1023 题目大意: 一列N节的火车以严格的顺序到一个站里.问出来的时候有多少种顺序. 解题思路: 典型 ...

  9. 程序猿果真有前端后端client吗

    前端 后端 client DBA OP 程序猿有分这么细的吗? 入行时候有区别. 殊途同归 吾道一以贯之, 假设作为程序猿不能领悟一贯, 则永远不清楚.

  10. 取消cp命令别名

    1. 取消cp命令别名unalias cpcp -rf恢复别名alias cp='cp -i'2.关闭当前用户下的cp别名配置sed -i "s/alias cp='cp -i'/#alia ...