一、题目描述

We wish to tile a grid 4 units high and N units long with rectangles (dominoes) 2 units by one unit (in either orientation). For example, the figure shows the five different ways that a grid 4 units high and 2 units wide may be tiled.



Write a program that takes as input the width, W , of the grid and outputs the number of different ways to tile a 4-by-W grid.

二、输入

The first line of input contains a single integer N , (1<=N<=1000) which is the number of datasets that follow.

Each dataset contains a single decimal integer, the width, W , of the grid for this problem instance.

三、输出

For each problem instance, there is one line of output: The problem instance number as a decimal integer (start counting at one), a single space and the number of tilings of a 4-by-W grid. The values of W will be chosen so the count will fit in a 32-bit integer.

例如

输入:

3

2

3

7

输出:

1 5

2 11

3 781

四、解题思路

1、问题分析

使用无数个1x2的多米诺骨牌去铺满4xn的棋盘,问有多少种不同的覆盖方法。

这道题可以使用动态规划的方法解。

很明显当n等于1时,只有一种方法,也就是两个都是竖着放。

当n>2时,我们使用一个矩阵matrix[n][m]来表示排在第n列的情况。m表示每列的各格的状态,例如该题有4行,所以m表示的是4位只有0、1状态的数(0表示空,1表示排)。2^4=16,应该有16中状态,但是并不是每种状态都能成立。

状态转移:

matrix[i][0] = matrix[i - 1][15];
matrix[i][3] = matrix[i - 1][15] + matrix[i - 1][12];
matrix[i][6] = matrix[i - 1][15] + matrix[i - 1][9];
matrix[i][9] = matrix[i - 1][6];
matrix[i][12] = matrix[i - 1][15] + matrix[i - 1][3];
matrix[i][15] = matrix[i - 1][15] + matrix[i - 1][12] + matrix[i - 1][6] + matrix[i - 1][3] + matrix[i - 1][0];

初始状态:

matrix[1][0] = matrix[1][3] = matrix[1][6] = matrix[1][12] = matrix[1][15] = 1;

状态转移图(灰色表示不填充,橙色表示填充)

1)matrix[i - 1][15] 转移到 matrix[i][0]:

2)matrix[i - 1][15] 转移到matrix[i][3]:

3)matrix[i - 1][12] 转移到matrix[i][3]:

4)matrix[i - 1][15] 转移到matrix[i][6]:

5)matrix[i - 1][9] 转移到matrix[i][6]:

6)matrix[i - 1][6] 转移到matrix[i][9]:

7)matrix[i - 1][15] 转移到matrix[i][12]:

8)matrix[i - 1][3] 转移到matrix[i][12]:

9)matrix[i - 1][15] 转移到matrix[i][15]:

10)matrix[i - 1][12] 转移到matrix[i][15]:

11)matrix[i - 1][6] 转移到matrix[i][15]:

12)matrix[i - 1][3] 转移到matrix[i][15]:

13)matrix[i - 1][0] 转移到matrix[i][15]:

五、代码

#include<iostream>

using namespace std;

int main()
{
int leng = 1000;
int result; int printNum; int matrix[leng + 1][16];
matrix[1][0] = matrix[1][3] = matrix[1][6] = matrix[1][12] = matrix[1][15] = 1;
matrix[1][9] = 0;
for(int i = 2; i < leng + 1; i++)
{ matrix[i][0] = matrix[i - 1][15];
matrix[i][3] = matrix[i - 1][15] + matrix[i - 1][12];
matrix[i][6] = matrix[i - 1][15] + matrix[i - 1][9];
matrix[i][9] = matrix[i - 1][6];
matrix[i][12] = matrix[i - 1][15] + matrix[i - 1][3];
matrix[i][15] = matrix[i - 1][15] + matrix[i - 1][12] + matrix[i - 1][6] + matrix[i - 1][3] + matrix[i - 1][0];
} cin >> printNum; for(int i = 1; i < printNum + 1; i++)
{
cin >> result;
cout << i << " " << matrix[result][15] << endl;
}
return 0;
}

附:在别人的博客看到另外一种方法,操作起来更简单,但我看不懂(尤其是初始状态a0和b0为什么等于0)。能看懂的朋友,请给我讲解讲解。一下是他的博客http://blog.csdn.net/famousdt/article/details/7480103

<Sicily>Tiling a Grid With Dominoes的更多相关文章

  1. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  2. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  3. DP:0

    小故事: A * "1+1+1+1+1+1+1+1 =?" * A : "上面等式的值是多少" B : *计算* "8!" A *在上面等式 ...

  4. soj1049.Mondriaan

    1049. Mondriaan Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Squares and rectangl ...

  5. dvtm: 平铺式终端管理器 — LinuxTOY

    dvtm: 平铺式终端管理器 — LinuxTOY LinuxTOY 是一个致力于提供 Linux 相关资讯的专题站点.如果您发现了好用好玩的 Linux 东东并愿意发扬自由.分享的精神,可以点击顶部 ...

  6. ArcGIS Server的切图原理深入(转载)

    http://forum.osgearth.org/template/NamlServlet.jtp?macro=search_page&node=2174485&query=arcg ...

  7. ArcGIS Server的切图原理深入【转】

    http://blog.newnaw.com/?p=69 GoogleMap,Virtual Earth,YahooMap等,目前所有的WebGIS都使用了缓存机制以提高地图访问速度.原理都是将地图设 ...

  8. uva 11270 - Tiling Dominoes(插头dp)

    题目链接:uva 11270 - Tiling Dominoes 题目大意:用1∗2木块将给出的n∗m大小的矩阵填满的方法总数. 解题思路:插头dp的裸题,dp[i][s]表示第i块位置.而且该位置相 ...

  9. 【UVa】11270 Tiling Dominoes

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

随机推荐

  1. 实战c++中的vector系列--再谈vector的insert()方法(都是make_move_iterator惹的祸)

    之前说过了关于vector的insert()方法,把vector B的元素插入到vector A中.vector A中的结果我们可想而知,可是vector B中的元素还会怎样? 看看之前写过的程序: ...

  2. ORACLE RAC如何增加节点

    ORACLE RAC系统是一个可以横向进行扩展的系统,当一个RAC系统计算能力不满足客户的需求时候,增加节点能够快速增加整个系统的计算能力,使得客户系统计算能力得到一定的提升,以满足客户不断增长的计算 ...

  3. java web项目中资源国际化

    有一些网站会有语言栏选项: 选择英文,内容就显示为英文: 选择中文,内容就显示文中文. 这里就用到了国际化资源. 先看效果图: 步骤: 1.建立资源包: mess_en_US.properties ( ...

  4. 51nod 1158 全是1的最大子矩阵(单调栈 ,o(n*m))

    前置问题:51nod 1102 面积最大的矩形 附上链接: 51nod 1102 面积最大的矩形 这题的题解博客 需要了解的知识:单调栈,在前置问题中已经讲解. 解题思路 对每行求左边连续1的个数,得 ...

  5. STM8S103 STVD编译空间不足

    关于text空间(理解为代码空间)不足问题 # 关于.bsct和.ubsct问题(着重参考http://www.waveshare.net/article/STM8-3-1-10.htm) map文件 ...

  6. shell-1.shell概述、2.shell脚本执行方式

    目录

  7. unserialize反序列化错误的解决办法

    1. UTF-8编码解决反序列化出错问题 function mb_unserialize($serial_str) { $serial_str = str_replace("\r" ...

  8. No mapping found for HTTP request with URI [/spring_liu/hello.do] in DispatcherServlet with name 'SpringMVC'

    控制台一直报No mapping found for HTTP request with URI [/spring_liu/hello.do] in DispatcherServlet with na ...

  9. Django之ORM的增删改查

    一.添加表记录 对于单表有两种方式 # 添加数据的两种方式 # 方式一:实例化对象就是一条表记录 Frank_obj = models.Student(name ="海东",cou ...

  10. linux 安装常用库

    在CentOS安装软件的时候,可能缺少一部分支持库,而报错.这里首先安装系统常用的支持库.那么在安装的时候就会减少很多的错误的出现. [root@bogon 桌面]#  yum install -y ...