<Sicily>Tiling a Grid With Dominoes
一、题目描述
We wish to tile a grid 4 units high and N units long with rectangles (dominoes) 2 units by one unit (in either orientation). For example, the figure shows the five different ways that a grid 4 units high and 2 units wide may be tiled.
Write a program that takes as input the width, W , of the grid and outputs the number of different ways to tile a 4-by-W grid.
二、输入
The first line of input contains a single integer N , (1<=N<=1000) which is the number of datasets that follow.
Each dataset contains a single decimal integer, the width, W , of the grid for this problem instance.
三、输出
For each problem instance, there is one line of output: The problem instance number as a decimal integer (start counting at one), a single space and the number of tilings of a 4-by-W grid. The values of W will be chosen so the count will fit in a 32-bit integer.
例如
输入:
3
2
3
7
输出:
1 5
2 11
3 781
四、解题思路
1、问题分析
使用无数个1x2的多米诺骨牌去铺满4xn的棋盘,问有多少种不同的覆盖方法。
这道题可以使用动态规划的方法解。
很明显当n等于1时,只有一种方法,也就是两个都是竖着放。
当n>2时,我们使用一个矩阵matrix[n][m]来表示排在第n列的情况。m表示每列的各格的状态,例如该题有4行,所以m表示的是4位只有0、1状态的数(0表示空,1表示排)。2^4=16,应该有16中状态,但是并不是每种状态都能成立。
状态转移:
matrix[i][0] = matrix[i - 1][15];
matrix[i][3] = matrix[i - 1][15] + matrix[i - 1][12];
matrix[i][6] = matrix[i - 1][15] + matrix[i - 1][9];
matrix[i][9] = matrix[i - 1][6];
matrix[i][12] = matrix[i - 1][15] + matrix[i - 1][3];
matrix[i][15] = matrix[i - 1][15] + matrix[i - 1][12] + matrix[i - 1][6] + matrix[i - 1][3] + matrix[i - 1][0];
初始状态:
matrix[1][0] = matrix[1][3] = matrix[1][6] = matrix[1][12] = matrix[1][15] = 1;
状态转移图(灰色表示不填充,橙色表示填充)
1)matrix[i - 1][15] 转移到 matrix[i][0]:
2)matrix[i - 1][15] 转移到matrix[i][3]:
3)matrix[i - 1][12] 转移到matrix[i][3]:
4)matrix[i - 1][15] 转移到matrix[i][6]:
5)matrix[i - 1][9] 转移到matrix[i][6]:
6)matrix[i - 1][6] 转移到matrix[i][9]:
7)matrix[i - 1][15] 转移到matrix[i][12]:
8)matrix[i - 1][3] 转移到matrix[i][12]:
9)matrix[i - 1][15] 转移到matrix[i][15]:
10)matrix[i - 1][12] 转移到matrix[i][15]:
11)matrix[i - 1][6] 转移到matrix[i][15]:
12)matrix[i - 1][3] 转移到matrix[i][15]:
13)matrix[i - 1][0] 转移到matrix[i][15]:
五、代码
#include<iostream>
using namespace std;
int main()
{
int leng = 1000;
int result;
int printNum;
int matrix[leng + 1][16];
matrix[1][0] = matrix[1][3] = matrix[1][6] = matrix[1][12] = matrix[1][15] = 1;
matrix[1][9] = 0;
for(int i = 2; i < leng + 1; i++)
{
matrix[i][0] = matrix[i - 1][15];
matrix[i][3] = matrix[i - 1][15] + matrix[i - 1][12];
matrix[i][6] = matrix[i - 1][15] + matrix[i - 1][9];
matrix[i][9] = matrix[i - 1][6];
matrix[i][12] = matrix[i - 1][15] + matrix[i - 1][3];
matrix[i][15] = matrix[i - 1][15] + matrix[i - 1][12] + matrix[i - 1][6] + matrix[i - 1][3] + matrix[i - 1][0];
}
cin >> printNum;
for(int i = 1; i < printNum + 1; i++)
{
cin >> result;
cout << i << " " << matrix[result][15] << endl;
}
return 0;
}
附:在别人的博客看到另外一种方法,操作起来更简单,但我看不懂(尤其是初始状态a0和b0为什么等于0)。能看懂的朋友,请给我讲解讲解。一下是他的博客http://blog.csdn.net/famousdt/article/details/7480103
<Sicily>Tiling a Grid With Dominoes的更多相关文章
- HOJ题目分类
各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...
- Soj题目分类
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...
- DP:0
小故事: A * "1+1+1+1+1+1+1+1 =?" * A : "上面等式的值是多少" B : *计算* "8!" A *在上面等式 ...
- soj1049.Mondriaan
1049. Mondriaan Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Squares and rectangl ...
- dvtm: 平铺式终端管理器 — LinuxTOY
dvtm: 平铺式终端管理器 — LinuxTOY LinuxTOY 是一个致力于提供 Linux 相关资讯的专题站点.如果您发现了好用好玩的 Linux 东东并愿意发扬自由.分享的精神,可以点击顶部 ...
- ArcGIS Server的切图原理深入(转载)
http://forum.osgearth.org/template/NamlServlet.jtp?macro=search_page&node=2174485&query=arcg ...
- ArcGIS Server的切图原理深入【转】
http://blog.newnaw.com/?p=69 GoogleMap,Virtual Earth,YahooMap等,目前所有的WebGIS都使用了缓存机制以提高地图访问速度.原理都是将地图设 ...
- uva 11270 - Tiling Dominoes(插头dp)
题目链接:uva 11270 - Tiling Dominoes 题目大意:用1∗2木块将给出的n∗m大小的矩阵填满的方法总数. 解题思路:插头dp的裸题,dp[i][s]表示第i块位置.而且该位置相 ...
- 【UVa】11270 Tiling Dominoes
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
随机推荐
- 浅谈SaaS应用开发的难度
近期做SaaS应用的非常多,这样的模式是未来的一种趋势,这样的模式的最大优点就是云计算的优点--节约资源.网上有非常多人觉得SaaS非常easy,就是一个多用户租赁模式.这样的认识也不能说不正确.由于 ...
- jsp的凝视可能会影响页面载入速度
在jsp页面使用"<!-- -->"的凝视,凝视里面的java代码还是会得到运行,能够再查看页面源码上看到运行完毕的内容,这样就会让不希望运行的代码得到运行.影响载入速 ...
- [Android] Android开发优化之——对界面UI的优化(1)
在Android应用开发过程中,屏幕上控件的布局代码和程序的逻辑代码通常是分开的.界面的布局代码是放在一个独立的xml文件中的,这个文件里面是树型组织的,控制着页面的布局.通常,在这个页面中会用到很多 ...
- MongoDB数据查询详解
查询全部 db.infos.find(); db.infos.find({"url":"www.baidu.com"}); id不要显示出来 db.info ...
- [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)
题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...
- OpenGL编程(七)3D模型的深度(z轴)检测
下图是我们要修改后的效果图: 一.深度检测 1.模型Z轴显示有问题: 上一次试验中,如果认真留意,会发现一个问题.当控制锥体在左右或上下旋转时,你会发现锥体看起来是在+-180度之间来回摆动,而不是3 ...
- HDU 1704 Rank【传递闭包】
解题思路:给出n个选手,m场比赛,问不能判断胜负的询问最多有多少种 用传递闭包即可 但是如果直接用3重循环会超时 在判断d[i][j]=d[i][k]||d[k][j]是否连通的时候 可以加一个if语 ...
- lsof 命令简介
losf 命令可以列出某个进程打开的所有文件信息.打开的文件可能是普通的文件,目录,NFS文件,块文件,字符文件,共享库,常规管道,明明管道,符号链接,Socket流,网络Socket,UNIX域So ...
- [NOIP2015普及组]推销员
题目:洛谷P2672.codevs5126.Vijos P1977 题目大意:有个推销员要去推销,要你求他推销1~n户人家分别最多花多少“疲劳值”.具体见题目. 解题思路:如果用$O(n^2)$做的话 ...
- sort排序到底怎么排序
sort()方法 sort() 方法在适当的位置对数组的元素进行排序,并返回数组. <!DOCTYPE html> <html> <head> <meta c ...