[Javascript] Classify text into categories with machine learning in Natural
In this lesson, we will learn how to train a Naive Bayes classifier or a Logistic Regression classifier - basic machine learning algorithms - in order to classify text into categories.
var natural = require('natural');
var classifier = new natural.BayesClassifier();
var trainingData = [
{text: 'RE: Canadian drugs now on sale', label: 'spam'},
{text: 'Earn more from home', label: 'spam'},
{text: 'Information now available!!!', label: 'spam'},
{text: 'Earn easy cash', label: 'spam'},
{text: 'Your business trip is confirmed for Monday the 4th', label: 'notspam'},
{text: 'Project planning - next steps', label: 'notspam'},
{text:'Birthday party next weekend', label: 'notspam'},
{text: 'Drinks on Monday?', label: 'notspam'}
];
var testData = [
{text: 'Drugs for cheap', label: 'spam'},
{text: 'Next deadline due Monday', label: 'notspam'},
{text: 'Meet me at home?', label: 'notspam'},
{text: 'Hang out with someone near you', label: 'spam'}
];
trainingData.forEach(function(item){
classifier.addDocument(item.text, item.label);
});
classifier.train();
testData.forEach(function(item){
var labelGuess = classifier.classify(item.text);
console.log("\n");
console.log(item.text);
console.log("Label:", labelGuess);
console.log(classifier.getClassifications(item.text));
});
[Javascript] Classify text into categories with machine learning in Natural的更多相关文章
- [Javascript] Classify JSON text data with machine learning in Natural
In this lesson, we will learn how to train a Naive Bayes classifier and a Logistic Regression classi ...
- A Gentle Guide to Machine Learning
A Gentle Guide to Machine Learning Machine Learning is a subfield within Artificial Intelligence tha ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- 100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45, Gaussian Process Basics, David ...
- [C5] Andrew Ng - Structuring Machine Learning Projects
About this Course You will learn how to build a successful machine learning project. If you aspire t ...
- Machine Learning for Developers
Machine Learning for Developers Most developers these days have heard of machine learning, but when ...
- What is machine learning?
What is machine learning? One area of technology that is helping improve the services that we use on ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- [C2P2] Andrew Ng - Machine Learning
##Linear Regression with One Variable Linear regression predicts a real-valued output based on an in ...
随机推荐
- BZOJ 3224 平衡树模板题
Treap: //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; int n, ...
- 初学PHP&MySQL 2014-05-31 12:40 92人阅读 评论(0) 收藏
PHP echo print 都能输出文本 date(format,timestamp)可以格式化时间戳 mktime()可以返回指定日期的时间戳 include 'filename'或者 requ ...
- 在Ubuntu14.04中安装Py3和切换Py2和Py3环境
前几天小编给大家分享了如何安装Ubuntu14.04系统,感兴趣的小伙伴可以戳这篇文章:手把手教你在VMware虚拟机中安装Ubuntu14.04系统.今天小编给大家分享一下在Ubuntu14.04系 ...
- OpenJDK源码研究笔记(十):枚举的高级用法,枚举实现接口,竟是别有洞天
在研究OpenJDK,Java编译器javac源码的过程中,发现以下代码. 顿时发现枚举类竟然也有如此"高端大气上档次"的用法. 沙场点兵(用法源码) com.sun.tools. ...
- OpenStack_Swift源代码分析——Object-auditor源代码分析(2)
1 Object-aduitor审计详细分析 上一篇文章中,解说了Object-aduitor的启动,当中审计的详细运行是AuditorWorker实现的.在run_audit中实例化了Auditor ...
- UVA 12508 - Triangles in the Grid(计数问题)
12508 - Triangles in the Grid 题目链接 题意:给定一个n∗m格子的矩阵,然后给定A,B.问能找到几个面积在A到B之间的三角形. 思路:枚举每一个子矩阵,然后求[0,A]的 ...
- 从Java到C++——常量的使用规则
常量是一种标识符,它的值在执行期间恒定不变.C语言用 #define来定义常量(称为宏常量). C++ 语言除了 #define外还能够用const来定义常量(称为const常量). 一.为什么须要常 ...
- 自己定义控件-DownSlidingDrawer
一.描写叙述 能够下拉的 SlidingDrawer 二.效果图 图片是网上找到,可是效果是一样的 三.源代码 https://github.com/mentor811/Demo_MySlidingD ...
- Spring 配置自动扫描原理说明
Spring利用IOC容器将所有的bean进行有秩序的管理维护,而实际项目中不可能在xml文件中创建bean,而是利用了Spring的组件自动扫描机制,通过在classpath自动扫描的方式把组件纳入 ...
- POJ 2457 BFS
题意: 说人话: 从A到B连边 找从1到k的最短路 并输出路径(随便一条即可 ) 如果不能到达 输出-1 思路: 搜 //By SiriusRen #include <queue> #in ...