CUDA入门1
1GPUs can handle thousands of concurrent threads.
2The pieces of code running on the gpu are called kernels
3A kernel is executed by a set of threads.
4All threads execute the same code (SPMD)
5Each thread has an index that is used to calculate memory addresses that this will access.


1Threads are grouped into blocks
2 Blocks are grouped into a grid
3 A kernel is executed as a grid of blocks of threads
Built-in variables ⎯ threadIdx, blockIdx ⎯ blockDim, gridDim

CUDA的线程组织即Grid-Block-Thread结构。一组线程并行处理可以组织为一个block,而一组block并行处理可以组织为一个Grid。下面的程序分别为线程并行和块并行,线程并行为细粒度的并行,而块并行为粗粒度的并行。addKernelThread<<<1, size>>>(dev_c, dev_a, dev_b);
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <time.h>
#include <stdlib.h> #define MAX 255
#define MIN 0
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size,int type,float* etime);
__global__ void addKernelThread(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
__global__ void addKernelBlock(int *c, const int *a, const int *b)
{
int i = blockIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = ; int a[arraySize] = { , , , , };
int b[arraySize] = { , , , , }; for (int i = ; i< arraySize ; i++){
a[i] = rand() % (MAX + - MIN) + MIN;
b[i] = rand() % (MAX + - MIN) + MIN;
}
int c[arraySize] = { };
// Add vectors in parallel.
cudaError_t cudaStatus;
int num = ; float time;
cudaDeviceProp prop;
cudaStatus = cudaGetDeviceCount(&num);
for(int i = ;i<num;i++)
{
cudaGetDeviceProperties(&prop,i);
} cudaStatus = addWithCuda(c, a, b, arraySize,,&time); printf("Elasped time of thread is : %f \n", time);
printf("{%d,%d,%d,%d,%d} + {%d,%d,%d,%d,%d} = {%d,%d,%d,%d,%d}\n",a[],a[],a[],a[],a[],b[],b[],b[],b[],b[],c[],c[],c[],c[],c[]); cudaStatus = addWithCuda(c, a, b, arraySize,,&time); printf("Elasped time of block is : %f \n", time); if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "addWithCuda failed!");
return ;
}
printf("{%d,%d,%d,%d,%d} + {%d,%d,%d,%d,%d} = {%d,%d,%d,%d,%d}\n",a[],a[],a[],a[],a[],b[],b[],b[],b[],b[],c[],c[],c[],c[],c[]);
// cudaThreadExit must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaThreadExit();
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaThreadExit failed!");
return ;
}
return ;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size,int type,float * etime)
{
int *dev_a = ;
int *dev_b = ;
int *dev_c = ;
clock_t start, stop;
float time;
cudaError_t cudaStatus; // Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice();
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
} // Launch a kernel on the GPU with one thread for each element.
if(type == ){
start = clock();
addKernelThread<<<, size>>>(dev_c, dev_a, dev_b);
}
else{
start = clock();
addKernelBlock<<<size, >>>(dev_c, dev_a, dev_b);
} stop = clock();
time = (float)(stop-start)/CLOCKS_PER_SEC;
*etime = time;
// cudaThreadSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaThreadSynchronize();
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess)
{
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
运行的结果是
Elasped time of thread is : 0.000010
{103,105,81,74,41} + {198,115,255,236,205} = {301,220,336,310,246}
Elasped time of block is : 0.000005
{103,105,81,74,41} + {198,115,255,236,205} = {301,220,336,310,246}
CUDA入门1的更多相关文章
- CUDA入门
CUDA入门 鉴于自己的毕设需要使用GPU CUDA这项技术,想找一本入门的教材,选择了Jason Sanders等所著的书<CUDA By Example an Introduction to ...
- 一篇不错的CUDA入门
鉴于自己的毕设需要使用GPU CUDA这项技术,想找一本入门的教材,选择了Jason Sanders等所著的书<CUDA By Example an Introduction to Genera ...
- CUDA入门需要知道的东西
CUDA刚学习不久,做毕业要用,也没时间研究太多的东西,我的博客里有一些我自己看过的东西,不敢保证都特别有用,但是至少对刚入门的朋友或多或少希望对大家有一点帮助吧,若果你是大牛请指针不对的地方,如果你 ...
- Cuda入门笔记
最近在学cuda ,找了好久入门的教程,感觉入门这个教程比较好,网上买的书基本都是在掌握基础后才能看懂,所以在这里记录一下.百度文库下载,所以不知道原作者是谁,向其致敬! 文章目录 1. CUDA是什 ...
- CUDA 入门(转)
CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要 ...
- CUDA编程->CUDA入门了解(一)
安装好CUDA6.5+VS2012,操作系统为Win8.1版本号,首先下个GPU-Z检測了一下: 看出本显卡属于中低端配置.关键看两个: Shaders=384.也称作SM.或者说core/流处理器数 ...
- CUDA中Bank conflict冲突
转自:http://blog.csdn.net/smsmn/article/details/6336060 其实这两天一直不知道什么叫bank conflict冲突,这两天因为要看那个矩阵转置优化的问 ...
- 【CUDA】CUDA框架介绍
引用 出自Bookc的博客,链接在此http://bookc.github.io/2014/05/08/my-summery-the-book-cuda-by-example-an-introduct ...
- 转:ubuntu 下GPU版的 tensorflow / keras的环境搭建
http://blog.csdn.net/jerr__y/article/details/53695567 前言:本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环 ...
随机推荐
- jython 2.7 b3发布
Jython 2.7b3 Bugs Fixed - [ 2108 ] Cannot set attribute to instances of AST/PythonTree (blocks pyfla ...
- DistributedCache小记
一.DistributedCache简介 DistributedCache是hadoop框架提供的一种机制,可以将job指定的文件,在job执行前,先行分发到task执行的机器上,并有相关机制对cac ...
- Convert string to binary and binary to string in C#
String to binary method: public static string StringToBinary(string data) { StringBuilder sb = new S ...
- mysql innodb表 utf8 gbk占用空间相同,毁三观
昨天因为发生字符集转换相关错误,今天想验证下utf8和gbk中英文下各自空间的差距.这一测试,绝对毁三观,无论中文还是中文+英文,gbk和utf8占用的实际物理大小完全相同,根本不是理论上所述的“UT ...
- [Architecture Pattern] Singleton Locator
[Architecture Pattern] Singleton Locator 目的 组件自己提供Service Locator模式,用来降低组件的耦合度. 情景 在开发系统时,底层的Infrast ...
- jquery实现拖拽以及jquery监听事件的写法
很久之前写了一个jquery3D楼盘在线选择,这么一个插件,插件很简单,因为后期项目中没有实际用到,因此,有些地方不是很完善,后面也懒得再进行修改维护了.最近放到github上面,但是也少有人问津及s ...
- 关于js中两种定时器的设置及清除
1.JS中的定时器有两种: window.setTimeout([function],[interval]) 设置一个定时器,并且设定了一个等待的时间[interval],当到达时间后,执行对应的方法 ...
- 为什么要选择Sublime Text3?
为什么要选择Sublime Text3? Sublime Text3 自动保存,打开图片 跨平台启动快!!!!多行游标,太好用. 插件,简直选不过来. 代码片段 VIM兼容模式 菜单栏基础功能介绍 F ...
- SharePoint 服务器端对象模型 之 使用LINQ进行数据访问操作(Part 2)
(四)使用LINQ进行列表查询 在生成实体类之后,就可以利用LINQ的强大查询能力进行SharePoint列表数据的查询了.在传统SharePoint对象模型编程中,需要首先获取网站对象,再进行其他操 ...
- SharePoint 2010: Nailing the error "The Security Token Service is unavailable"
http://blogs.technet.com/b/sykhad-msft/archive/2012/02/25/sharepoint-2010-nailing-the-error-quot-the ...