hdu 5726(二分)
GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others)
Total Submission(s): Accepted Submission(s): Problem Description
Give you a sequence of N(N≤,) integers : a1,...,an(<ai≤,,). There are Q(Q≤,) queries. For each query l,r you have to calculate gcd(al,,al+,...,ar) and count the number of pairs(l′,r′)(≤l<r≤N)such that gcd(al′,al′+,...,ar′) equal gcd(al,al+,...,ar). Input
The first line of input contains a number T, which stands for the number of test cases you need to solve. The first line of each case contains a number N, denoting the number of integers. The second line contains N integers, a1,...,an(<ai≤,,). The third line contains a number Q, denoting the number of queries. For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries. Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from ). For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+,...,ar′) equal gcd(al,al+,...,ar). Sample Input Sample Output
Case #:
/*
难点在于计数,关键要发现gcd的递减性
对于1到n的(l,r)
对于固定的l
gcd(l,r)>=gcd(l,r+1)
对于固定的r
gcd(l,r)<=gcd(l+1,r)
因此可以不用逐一地进行计数
方法为:
枚举每一个左区间,对满足gcd(l,ri)的右区间进行二分查找
跳跃着进行计数
*/
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <map>
#include <vector>
#define scan1(x) scanf("%d",&x)
#define scan2(x,y) scanf("%d%d",&x,&y)
#define scan3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const int Max=1e6+;
int dp[Max][];
map<int,LL> vis;
int A[Max];
int gcd(int x,int y)
{
if(x<y) swap(x,y);
return (y==?x:gcd(y,x%y));
}
void RMQ_init(int n)
{
for(int i=; i<=n; i++) dp[i][]=A[i];
for(int j=; (<<j)<=n; j++)
{
for(int i=; i+(<<j)-<=n; i++)
{
dp[i][j]=gcd(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
}
int RMQ(int l,int r)
{
int k=;
while((<<(k+))<=r-l+) k++;
return gcd(dp[l][k],dp[r-(<<k)+][k]);
}
void Init()
{
vis.clear();
}
int L[Max],R[Max];
int main()
{
int T,ca=;
for(scan1(T); T; T--)
{
int n,m,num;
scan1(n);
for(int i=; i<=n; i++) scan1(A[i]);
RMQ_init(n);
Init();
scan1(m);
for(int i=; i<=m; i++)
{
scan2(L[i],R[i]);
num=RMQ(L[i],R[i]);
vis.insert(make_pair(num,));
}
int l,r,mid,d1,d2,ans,nex;
for(int i=; i<=n; i++)
{
nex=i;
while(nex<=n)
{
d1=RMQ(i,nex);
l=nex;r=n;
while(l<=r)
{
mid=(l+r)>>;
d2=RMQ(i,mid);
if(d2>=d1) l=mid+,ans=mid;
else r=mid-;
}
if(vis.find(d1)!=vis.end())
vis[d1]+=(ans-nex)+;
nex=r+;
}
}
printf("Case #%d:\n",ca++);
for(int i=; i<=m; i++)
{
ans=RMQ(L[i],R[i]);
printf("%d %lld\n",ans,vis[ans]);
}
}
return ;
}
hdu 5726(二分)的更多相关文章
- HDU 5726 GCD 区间GCD=k的个数
GCD Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 4024 二分
转自:http://www.cnblogs.com/kuangbin/archive/2012/08/23/2653003.html 一种是直接根据公式计算的,另外一种是二分算出来的.两种方法速度 ...
- HDU 5726 GCD (RMQ + 二分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726 给你n个数,q个询问,每个询问问你有多少对l r的gcd(a[l] , ... , a[r]) ...
- HDU 5726 GCD(RMQ+二分)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5726 题意:给出一串数字,现在有多次询问,每次询问输出(l,r)范围内所有数的gcd值,并且输出有多 ...
- hdu 5726 GCD 倍增+ 二分
题目链接 给n个数, 定义一个运算f[l,r] = gcd(al, al+1,....ar). 然后给你m个询问, 每次询问给出l, r. 求出f[l, r]的值以及有多少对l', r' 使得f[l, ...
- HDU 5726 GCD (2016多校、二分、ST表处理区间GCD、数学)
题目链接 题意 : 给出一个有 N 个数字的整数数列.给出 Q 个问询.每次问询给出一个区间.用 ( L.R ) 表示.要你统计这个整数数列所有的子区间中有多少个和 GCD( L ~ R ) 相等.输 ...
- rmq +二分暴力 hdu 5726
参考博客 题意:n 个数字的数列,有m个询问:求出 L 到 R 的 gcd(最大公约数 ),然后问这整个序列中有多少个区间的 gcd 和这个一样. 分析:L 到 R的gcd直接用RM ...
- hdu 5726 GCD 暴力倍增rmq
GCD/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence ...
- hdu 1669(二分+多重匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1669 思路:由于要求minimize the size of the largest group,由此 ...
随机推荐
- php数组转换成json格式。
{ "touser":"OPENID", "template_id":"ngqIpbwh8bUfcSsECmogfXcV14J0t ...
- Statement及PreparedStatement执行多个sql
这两个对象的区别: 1.Statement它更适合执行不同sql的批处理,它没有提供预处理功能,性能比较低. 2.PreparedStatement它适合执行相同的批处理,它提供了预处理功能, ...
- Android Menu 主菜单是使用
在Android里面每个Activity都绑定了一个Menu(菜单)有些时候我们需要使用到菜单.用法很简单,我们只需要重写onCreateOptionsMenu和onOptionsItemSelect ...
- mongodb根据字符长度作为条件查询
{ $where:"this.XXX.length==2" } 用$where条件查询,等号要用==.虽说$where查询可能效率不是很好,这只是我能想到的,有更好的方法欢迎指教
- Search history in "Maps"
A friend of mine came to me with her iPhone yesterday. She wanted to know how to clear search histor ...
- NHibernate系列文章八:NHibernate对象一级缓存
摘要 Nhibernatea缓存非常强大,按照缓存存储在Session对象还是SessionFactory对象分为一级缓存和二级缓存. 一级缓存存在于Session对象里,也叫Session缓存,由S ...
- 【转】java的socket编程
转自:http://www.cnblogs.com/linzheng/archive/2011/01/23/1942328.html 一,网络编程中两个主要的问题 一个是如何准确的定位网络上一台或多台 ...
- Spark Idea Maven 开发环境搭建
一.安装jdk jdk版本最好是1.7以上,设置好环境变量,安装过程,略. 二.安装Maven 我选择的Maven版本是3.3.3,安装过程,略. 编辑Maven安装目录conf/settings.x ...
- 获取ServletContext
ServletConfig config.getServletContext(): GenericServlet this.getServletContext(); HttpSe ...
- 深入理解js——一切都是对象
"一切皆对象" 当然也不是所有的都是对象,值类型(undefined,number,string,boolean)就不是对象:而函数.对象.数组.null.new Number(1 ...