POJ3169 Layout
Description
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Source
正解:差分约束系统+SPFA
解题报告:
大概题意是给定排成一列的牛,然后两头牛之间的距离可能要大于等于某个值或者小于等于某个值,问是否存在或者终点是否可以无限远。
以前在codevs上面做过一道差分约束系统的题,然后就学会了这种神奇的思想。其实思想很简单,结合图论的话还是很有用的。
考虑题意,需要求1到n的最大距离。题目中给了很多限制条件,比如说x2-x1<=3,x4-x2>=6这样的条件。我们考虑像x2-x1<=3这样的条件,因为我们想让距离尽可能大,就要使距离最大化,然后建图,1向2连一条权值为3的边。那么像x4-x2>=6这样大于的怎么办呢,我们就可以把它变成x2-x4<=-6,边权为负即可。然后图上跑SPFA。
接着是个很重要的问题,是最短路还是最长路呢?按理说要想距离大应该跑最长路,但是我们想,我们这个图是怎么建的,根据每个条件的最大条件连边,那么说明我们肯定要取所有对这个点的约束中最小的那个(取交),所以只会越来越小。不难想到,最后求出的dis[n]就是我们要求的。
题意中的-1、-2怎么特判呢?如果有负权环就说明不可能,记一下每个点入队n次就说明有负权环。而可以无限大则说明还到不了n,则说明dis[n]仍为初值
轻松AC,代码如下:
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#ifdef WIN32
#define OT "%I64d"
#else
#define OT "%lld"
#endif
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const int inf = (<<);
int n,m1,m2;
int first[MAXN],to[MAXM],next[MAXM],w[MAXM],ecnt;
int dis[MAXN];
queue<int>Q;
bool pd[MAXN];
int cnt[MAXN]; inline int getint()
{
int w=,q=;
char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar();
return q ? -w : w;
} inline void link(int x,int y,int z){
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z;
} inline bool spfa(){
Q.push(); pd[]=;
for(int i=;i<=n;i++) dis[i]=inf;
while(!Q.empty()){
int u=Q.front(); Q.pop(); pd[u]=;
for(int i=first[u];i;i=next[i]) {
int v=to[i];
if(dis[v]>dis[u]+w[i]) {
dis[v]=dis[u]+w[i];
if(!pd[v]) {
Q.push(v);
pd[v]=;
cnt[v]++;
if(cnt[v]>=n) return false;
}
}
}
}
if(dis[n]==inf) printf("-2");
else printf("%d",dis[n]);
return true;
} inline void solve(){
n=getint(); m1=getint(); m2=getint();
int x,y,z;
for(int i=;i<=m1;i++) {
x=getint();y=getint();z=getint();
link(x,y,z);
}
for(int i=;i<=m2;i++) {
x=getint(); y=getint(); z=getint();
link(y,x,-z);
}
if(!spfa()) printf("-1");
} int main()
{
solve();
return ;
}
POJ3169 Layout的更多相关文章
- POJ3169 Layout(差分约束系统)
POJ3169 Layout 题意: n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ml组(u, v, w)的约束关系,表示牛 ...
- POJ-3169 Layout (差分约束+SPFA)
POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...
- POJ3169:Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15705 Accepted: 7551 题目链接:http ...
- POJ-3169 Layout 最短路 差分约束
题目链接:https://cn.vjudge.net/problem/POJ-3169 题意 Farmer John手下的一些牛有自己喜欢的牛,和讨厌的牛 喜欢的牛之间希望距离在给定距离D之内 讨厌的 ...
- [USACO2005][POJ3169]Layout(差分约束)
题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...
- POJ3169:Layout(差分约束)
http://poj.org/problem?id=3169 题意: 一堆牛在一条直线上按编号站队,在同一位置可以有多头牛并列站在一起,但编号小的牛所占的位置不能超过编号大的牛所占的位置,这里用d[i ...
- 转自作者:phylips@bmy
差分约束系统 2008-11-28 20:53:25| 分类: 算法与acm|举报|字号 订阅 出处:http://duanple.blog.163.com/blog/static/7097 ...
- 【POJ3169 】Layout (认真的做差分约束)
Layout Description Like everyone else, cows like to stand close to their friends when queuing for ...
- 【图论】POJ-3169 差分约束系统
一.题目 Description Like everyone else, cows like to stand close to their friends when queuing for feed ...
随机推荐
- 使用PS3手柄在PC玩Unity3D游戏
PS3手柄玩Unity游戏 今天把公司的PS3手柄接到PC上,想用手柄试一下玩赛车的感觉,老感觉用键盘按键玩的不爽. 把PS3的手柄接到PC上之后,系统提示正在安装驱动--,百度找资料,如何在PC上使 ...
- finder怎么才能找到library
右键Finder——前往目录 输入~/Library
- 2703 奶牛代理商 XII
2703 奶牛代理商 XII 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 小徐从美国回来后,成为了USAC ...
- 教你10分钟内在Windows上完成Rails开发环境的安装和配置
原文:http://www.cnblogs.com/tambor/archive/2011/12/25/rails_anzhuang_railsinstaller.html 一般来说,Windows开 ...
- http请求过程
想象用浏览器打开imooc.com网站,HTTP走过的环节: 1.首先,是对imooc.com域名解析,(1.1)浏览器搜索浏览器自身的DNS缓存.(DNS(Domain Name System,域名 ...
- GO To Definition的背后操作【VS2015 C#】
使用VS开发U3D项目时,去察看某个变量的声明,比如某组件的gameObject变量,会看到如下代码 一看似乎有点晕,这代码什么意思啊,就一个 public GameObject gameObject ...
- 在c++程序中执行DOS命令
转自博客:http://blog.csdn.net/ypist/article/details/8485049 #1,system()方式 在C盘根目录下新建文件夹,名称为12: system(&qu ...
- pyqt5界面与逻辑分离--信号槽的装饰器实现方式
本文展示了 pyqt5 信号槽的装饰器实现方式(借鉴自 eirc6) 一个简单的例子.实现功能:两个数相加,显示结果.如图 两个文件,第一个是界面文件 ui_calc.py # ui_calc.py ...
- 20135220谈愈敏Blog7_可执行程序的装载
可执行程序的装载 谈愈敏 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 一. ...
- Linux实验二报告
北京电子科技学院(BESTI) 实 验 报 告 课程:信息安全系统设计基础 班级: 201352 姓名:池彬宁 贺邦 学号:2013521 ...