Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 56826   Accepted: 12814

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.   Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 
The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1
 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
struct island
{
double x , y ;
double left , right ;
}a[];
int n ;
int d ;
bool cmp (island a , island b)
{
return a.x < b.x ;
} int main ()
{
// freopen ("a.txt" , "r" , stdin) ;
int cnt ;
int ans = ;
bool flag ; while (~ scanf ("%d%d" , &n , &d)) {
if (n == && d == )
break ;
flag = ; for (int i = ; i < n ; i++) {
scanf ("%lf%lf" , &a[i].x , &a[i].y) ;
if (a[i].y > 1.0 * d || a[i].y < || d <= ) {
flag = ;
}
if (!flag) {
a[i].left = (double) a[i].x - sqrt (1.0 * d * d - a[i].y * a[i].y) ;
a[i].right = (double) a[i].x + sqrt (1.0 * d * d - a[i].y * a[i].y) ;
}
}
if (flag) {
printf ("Case %d: -1\n" , ans++) ;
continue ;
}
sort (a , a + n , cmp) ;
cnt = ;
double l = a[].left , r = a[].right ;
for (int i = ; i < n ; i++) {
if (a[i].left > r) {
cnt++ ;
l = a[i].left ;
r = a[i].right ;
}
else {
l = a[i].left ;
r = a[i].right < r ? a[i].right : r ;
}
}
printf ("Case %d: %d\n" , ans++ , cnt) ;
}
return ;
}

别忘记每次都要跟新放radar的区间 ,orz

Radar Installation(贪心)的更多相关文章

  1. POJ 1328 Radar Installation 贪心 A

    POJ 1328 Radar Installation https://vjudge.net/problem/POJ-1328 题目: Assume the coasting is an infini ...

  2. Radar Installation 贪心

    Language: Default Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42 ...

  3. Radar Installation(贪心,可以转化为今年暑假不ac类型)

    Radar Installation Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) ...

  4. poj 1328 Radar Installation(贪心+快排)

    Description Assume the coasting is an infinite straight line. Land is in one side of coasting, sea i ...

  5. POJ - 1328 Radar Installation(贪心区间选点+小学平面几何)

    Input The input consists of several test cases. The first line of each case contains two integers n ...

  6. POJ 1328 Radar Installation 贪心算法

    Description Assume the coasting is an infinite straight line. Land is in one side of coasting, sea i ...

  7. POJ1328 Radar Installation(贪心)

    题目链接. 题意: 给定一坐标系,要求将所有 x轴 上面的所有点,用圆心在 x轴, 半径为 d 的圆盖住.求最少使用圆的数量. 分析: 贪心. 首先把所有点 x 坐标排序, 对于每一个点,求出能够满足 ...

  8. poj1328 Radar Installation —— 贪心

    题目链接:http://poj.org/problem?id=1328 题解:区间选点类的题目,求用最少的点以使得每个范围都有点存在.以每个点为圆心,r0为半径,作圆.在x轴上的弦即为雷达可放置的范围 ...

  9. POJ 1328 Radar Installation 贪心题解

    本题是贪心法题解.只是须要自己观察出规律.这就不easy了,非常easy出错. 一般网上做法是找区间的方法. 这里给出一个独特的方法: 1 依照x轴大小排序 2 从最左边的点循环.首先找到最小x轴的圆 ...

随机推荐

  1. Bootstrap系列 -- 20. 禁用状态

    Bootstrap框架的表单控件的禁用状态和普通的表单禁用状态实现方法是一样的,在相应的表单控件上添加属性“disabled” 在使用了“form-control”的表单控件中,样式设置了禁用表单背景 ...

  2. Pell方程及其一般形式

    一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...

  3. 17.C#类型判断和重载决策(九章9.4)

    今天来结束第九章,聊下我们经常忽略,但是编译器会帮我们完成的"类型判断和重载决策",理解编译器如何帮我们完成,相信在写代码时会更明确,避免一些编译出错,排查的问题,让我们开发更给力 ...

  4. jQuery基础之(五)jQuery自定义添加"$"与解决"$"的冲突

    1.自定义添加$ 从上面四篇文章我们看到jQuery的强大,但无论如何,jQuery都不可能满足所有用户的需求,而且有一些需求十分小众,也不适合放到整个jQuery框架中,正是因为这一点,jQuery ...

  5. HTML5——将图片拖拽上传

    如下图所示: 代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  6. linux 通过哪个命令可以查看某个服务及其端口、进程号

    netstat/lsof netstat命令用于显示与IP.TCP.UDP和ICMP协议相关的统计数据,一般用于检验本机各端口的网络连接情况 -a 显示一个所有的有效连接信息列表(包括已建立的连接,也 ...

  7. 35.Android之带删除按钮EditText学习

    今天实现Android里自定义带删除功能的EditText,效果如下: 当输入内容时,EditText变为带有一个删除功能按钮的编辑框,如图: 实现代码很简单,直接上代码, 布局文件xml: < ...

  8. 【poj2342】 Anniversary party

    http://poj.org/problem?id=2342 (题目链接) 题意 没有上司的舞会... Solution 树形dp入门题. dp[i][1]表示第i个节点的子树当节点i去时的最大值,d ...

  9. 【转】set容器的基本操作

    set的基本操作:begin()         返回指向第一个元素的迭代器clear()         清除所有元素count()         返回某个值元素的个数empty()        ...

  10. [NOIP2010] 提高组 洛谷P1514 引水入城

    题目描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N 行M 列的矩形,如上图所示,其中每个格子都代表一座城市,每座城市都有一个海拔高度. ...