Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers: N and Q (2 ≤ N ≤ 100; 1 ≤ Q ≤ N − 1). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. NextN − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)
 
题目大意:有一颗以1为根的二叉树,有n个点,每条边有一个边权,问保留Q条边,如何使这Q条边边权和最大,注意这Q条边必须连着点1。
思路:可以参考2009年IOI的论文《浅谈几类背包问题》,复杂度为O(NQ)。
 
代码(31ms):
 #include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std; const int MAXN = ; int head[MAXN], ecnt;
int to[MAXN << ], next[MAXN << ], weight[MAXN << ];
int dp[MAXN][MAXN];
int n, m; void init() {
memset(head, -, sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; weight[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; weight[ecnt] = c; next[ecnt] = head[v]; head[v] = ecnt++;
} inline void update_max(int &a, int b) {
if(a < b) a = b;
} void dfs(int f, int u, int C) {
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(v == f) continue;
for(int i = ; i <= C - ; ++i) dp[v][i] = dp[u][i] + weight[p];
dfs(u, v, C - );
for(int i = ; i <= C; ++i)
update_max(dp[u][i], dp[v][i - ]);
}
} int main() {
scanf("%d%d", &n, &m);
init();
for(int i = ; i < n; ++i) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
add_edge(u, v, c);
}
dfs(, , m);
printf("%d\n", dp[][m]);
}

URAL 1018 Binary Apple Tree(树DP)的更多相关文章

  1. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

  2. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  3. Ural 1018 Binary Apple Tree

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1018 Dynamic Programming. 首先要根据input建立树形结构,然后在 ...

  4. URAL1018 Binary Apple Tree(树dp)

    组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...

  5. timus 1018. Binary Apple Tree

    1018. Binary Apple Tree Time limit: 1.0 secondMemory limit: 64 MB Let's imagine how apple tree looks ...

  6. Ural-1018 Binary Apple Tree(树形dp+分组背包)

    #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #i ...

  7. URAL_1018 Binary Apple Tree 树形DP+背包

    这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...

  8. BNUOJ 13358 Binary Apple Tree

    Binary Apple Tree Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Orig ...

  9. POJ 3321 Apple Tree(树状数组)

                                                              Apple Tree Time Limit: 2000MS   Memory Lim ...

随机推荐

  1. 查询mysql当前连接数

    标签: mysql服务器cachedisk 2012-08-23 23:06 23377人阅读 评论(0) 收藏 举报  分类: MySql(36)  1.show status Threads_co ...

  2. hadoop与云技术、云计算混肴澄清

    本文引用自:http://www.aboutyun.com/blog-61-248.html 一.初学者问题: 请教个问题在实际的生成环境里面,数据源产生的地方部署Hadoop,还是需要程序把数据给迁 ...

  3. Prism&MEF构建开发框架

    系统框架构想效果图 平台简单由左侧菜单和右侧内容区以及顶部系统和用户信息区构成 菜单根据系统模块动态加载 右侧,根据左侧选中菜单动态加载子模块,子模块集合以tab选项卡方式布局 系统模块划分为Shel ...

  4. 利用快速排序原理找出数组中前n大的数

    #include <stdio.h> #include <stdint.h> #include <stdlib.h> #define MAX_SIZE 400001 ...

  5. 1011 最大公约数GCD

    1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B < ...

  6. 玩儿了一下django User authentication

    五一在家,VPN不能链接了,而项目在本地run的过程中,又需要链接公司的SSO server才能login.下雨,不想去公司,又不得不在家做task,只能想办法避开SSO login,以前知道djan ...

  7. python echo服务器和客户端(客户端可以用telnet之类的)

    发上来记录一下,省得下次再写一遍 服务器:server.py #-*- coding:utf-8 -*- from SocketServer import TCPServer, BaseRequest ...

  8. Notepad++ install vi plugin

    下载Notepad++,想安装vi插件. 使用Notepad++自带的插件管理器下载visimulator失败. 所以直接下载插件visimulator.dll,再导入. 下载地址: https:// ...

  9. 《JAVA NIO》第一章 简介

    1.2 CPU已不再是束缚 相反,是JVM 自身在I/O 方面效率欠佳.操作系统与Java 基于流的I/O模型有些不匹配. 操作系统要移动的是大块数据(缓冲区),这往往是在硬件直接存储器存取(DMA) ...

  10. <dependency>spring-webmvc</dependency>

    Spring 4.2.0.RELEASE版本: <dependency> <groupId>org.springframework</groupId> <ar ...