S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3514    Accepted Submission(s): 1544

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

 

Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 

Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 

Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
 

Sample Output
LWW
WWL
 

Source
 

Recommend
LL
 

人生中第一道SG函数题。。。。。

SG_DFS:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int k,s[111],t,m,a;
int sg[11000];

int SG_dfs(int x)
{
    if(sg[x]!=-1)
    {
        return sg[x];
    }
    int i;bool vis[111];
    memset(vis,false,sizeof(vis));
    for(i=0;s<=x&&i<k;i++)
    {
        SG_dfs(x-s);
        vis[sg[x-s]]=true;
    }
    for(i=0;i<=10000;i++)
    {
        if(!vis) break;
    }
    return sg[x]=i;
}

int main()
{
    while(scanf("%d",&k)!=EOF&&k)
    {
        for(int i=0;i<k;i++)
            scanf("%d",s+i);
        sort(s,s+k);
        memset(sg,-1,sizeof(sg));
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&m);
            int XOR=0;
            while(m--)
            {
                scanf("%d",&a);
                XOR^=SG_dfs(a);
            }
            printf("%c",XOR?'W':'L');
        }
        putchar(10);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

SG打表:

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

int k,s[111],t,m,a;
int sg[11000];

void getSG()
{
    memset(sg,0,sizeof(sg));
    bool flag[11000];
    for(int i=1;i<=10000;i++)
    {
        memset(flag,false,sizeof(flag));
        for(int j=0;j<k;j++)
        {
            if(s[j]>i) continue;
            flag[sg[i-s[j]]]=true;
        }
        for(int j=0;j<=10000;j++)
        {
            if(!flag[j])
            {
                sg=j;break;
            }
        }
    }
}

int main()
{
    while(scanf("%d",&k)!=EOF&&k)
    {
        for(int i=0;i<k;i++)
            scanf("%d",s+i);
        getSG();
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&m);
            int XOR=0;
            while(m--)
            {
                scanf("%d",&a);
                XOR^=sg[a];
            }
            printf("%c",XOR?'W':'L');
        }
        putchar(10);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 1536 S-Nim的更多相关文章

  1. 【HDOJ】4317 Unfair Nim

    基本的状态压缩,想明白怎么dp还是挺简单的.显然对n个数字进行状态压缩,dp[i][j]表示第i位状态j表示的位向高位产生了进位. /* 4317 */ #include <iostream&g ...

  2. HDOJ 5088 Revenge of Nim II 位运算

    位运算.. .. Revenge of Nim II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  3. HDU.1536.S-Nim(博弈论 Nim)

    题目链接 \(Description\) 给定一个集合S,每次只能拿S中某个元素个数的石子.每组数据有多组询问,询问给出m堆石子个数,问先手是否必胜.有多组数据. 1. 首先对操作数组排个序,再预处理 ...

  4. 【HDU】1536 S-Nim

    http://acm.hdu.edu.cn/showproblem.php?pid=1536 题意:同nim...多堆多询问...单堆n<=10000,每次取的是给定集合的数= = #inclu ...

  5. 【hdu 1536】S-Nim

    Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

  6. HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. HDOJ 2317. Nasty Hacks 模拟水题

    Nasty Hacks Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  8. HDOJ 1326. Box of Bricks 纯水题

    Box of Bricks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. [LeetCode] Nim Game 尼姆游戏

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

随机推荐

  1. TPLINK GPL code 简要分析

    从TPLINK官网下载了GPL code,下载后文件名是wr841nv9_en_gpl.tar.gz, 但是无论是linux还是windows下解压都提示压缩包有问题,不过还是可以解压出完整的目录的. ...

  2. 工作随笔——xshell4安装后应该做的一些事

    xshell4默认支持中文语言 选项→键盘和鼠标:设置快捷键,鼠标按键(可以提高工作效率) 1.选定文本自动复制到剪贴板 选择→将选定的文本自动复制到剪贴板(选上) 2.更高鼠标中间按钮和右键按钮的功 ...

  3. 怎样写 OpenStack Neutron 的 Extension (二)

    接着之前一篇文章,再来谈谈 Extension 的具体实现问题.我使用的是本地数据库加远程API调用的方法,所以先要定义一下数据库中 myextension 如何存储.首先,我们可以在自己的 plug ...

  4. Linq动态查询简易解决之道(原创)

    因为项目需要使用Linq来查询数据,但是在多条件查询时,需要使用一大堆if(...!=string.empty)等判断条件感觉不是很优雅.网上搜索以下,大概找到了两种办法,一种是老外写的一个类,感觉用 ...

  5. 开源分布式计算引擎 & 开源搜索引擎 Iveely 0.5.0 为大数据而生

    Iveely Computing 产生背景 08年的时候,我开始接触搜索引擎,当时遇到的第一个难题就是大数据实时并发处理,当时实验室的机器我们可以随便用,至少二三十台机器,可以,却没有程序可以将这些机 ...

  6. linux网络命令

    关键字 write wall last lastlog traceroute netstat mount 1.write 该命令可以给所有在线用户发送消息 示例: 接受消息用户:按回车可以退出 2.w ...

  7. 02.C#可空類型、默認參數、LINQ(一章1.3-1.4)

    利用上班時間發個隨筆,不知領導會不會看到,可能會有同事看到也說不定啊:) 關于可空類型,在C#1中沒有這個概念,在C#3中引入的.那比如我們要實現一個表示人的類,人有名字和年齡兩個屬性,如何表示一個沒 ...

  8. 编写高质量代码改善C#程序的157个建议[10-12]

    前言 本文已更新至http://www.cnblogs.com/aehyok/p/3624579.html .本文主要学习记录以下内容: 建议10.创建对象时需要考虑是否实现比较器 建议11.区别对待 ...

  9. Xunit

    Attributes Note: This table was written back when xUnit.net 1.0 has shipped, and needs to be updated ...

  10. sort关于去除重复/查找非重复/查找重复/统计

    去除重复sort file |uniq   查找非重复 sort file | uniq -u   查找重复 sort file | uniq -d   统计 sort file | uniq -c