【uva 534】Frogger(图论--最小瓶颈路 模版题)
题意:平面上有N个石头,给出坐标。一只青蛙从1号石头跳到2号石头,使路径上的最长便最短。输出这个值。(2≤N≤200)
解法:最小瓶颈树。而由于这题N比较小便可以用2种方法:
1.最短路径中提到过的Floyd算法,利用DP思想枚举出所有情况,O(n3)。具体关于Floyd算法的一些解释得等我过几天写一篇博文。
2.用Kruskal算法求出最小生成树再求出路径上的最长边权。具体解释见我之前的一篇博文: 关于生成树的拓展 {附【转】最小瓶颈路与次小生成树}(图论--生成树)
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<cmath>
5 #include<iostream>
6 using namespace std;
7
8 const int N=210;
9 const double INF=300010.0;
10 double d[N][N];
11 struct node{int x,y;}a[N];
12
13 double mmin(double x,double y) {return x<y?x:y;}
14 double mmax(double x,double y) {return x>y?x:y;}
15 double dist(int i,int j) {return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));}
16 int main()
17 {
18 int n,T=0;
19 while (scanf("%d",&n)!=EOF && n)
20 {
21 int i,j,k;
22 for (i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
23 for (i=1;i<=n;i++)
24 for (j=i;j<=n;j++)
25 d[i][j]=d[j][i]=dist(i,j);
26 for (k=1;k<=n;k++)//???
27 for (i=1;i<=n;i++)
28 for (j=1;j<=n;j++)//?i?j????1~k????????????
29 d[i][j]=mmin(d[i][j],mmax(d[i][k],d[k][j]));
30 printf("Scenario #%d\nFrog Distance = %.3lf\n\n",++T,d[1][2]);
31 }
32 }
1
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<cmath>
5 #include<algorithm>
6 #include<iostream>
7 using namespace std;
8
9 const int N=210,M=20010;
10 const double INF=300010.0;
11 int n,m;
12 int fa[N];
13 struct node{int x,y;}a[N];
14 struct edge
15 {
16 int x,y;
17 double d;
18 edge() {}
19 edge(int i,int j,double k) {x=i;y=j;d=k;}
20 }e[M];
21
22 double mmin(double x,double y) {return x<y?x:y;}
23 double mmax(double x,double y) {return x>y?x:y;}
24 bool cmp(edge x,edge y) {return x.d<y.d;}
25 double dist(int i,int j) {return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));}
26
27 int ffind(int x)
28 {
29 if (fa[x]!=x) fa[x]=ffind(fa[x]);
30 return fa[x];
31 }
32 double Kruskal(int u,int v)
33 {
34 int i;
35 for (i=1;i<=n;i++) fa[i]=i;
36 sort(e+1,e+1+m,cmp);
37 for (i=1;i<=m;i++)
38 {
39 int x=e[i].x,y=e[i].y;
40 int xx=ffind(x),yy=ffind(y);
41 if (xx!=yy)
42 {
43 fa[xx]=yy;
44 //if (x==u||y==u||x==v||y==v)//wrong
45 if (ffind(u)==ffind(v)) return e[i].d;
46 }
47 }
48 }
49 int main()
50 {
51 int T=0;
52 while (scanf("%d",&n)!=EOF && n)
53 {
54 int i,j;
55 for (i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
56 m=0;
57 for (i=1;i<=n;i++)
58 for (j=i+1;j<=n;j++)
59 e[++m]=edge(i,j,dist(i,j));
60 printf("Scenario #%d\nFrog Distance = %.3lf\n\n",++T,Kruskal(1,2));
61 }
62 }
2
P.S.而我之前关于代码2打的超复杂:“乖乖地”跑完一次Kruskal后删边,再建立邻接表,打算Bfs一次......
【uva 534】Frogger(图论--最小瓶颈路 模版题)的更多相关文章
- 【bzoj2429】[HAOI2006]聪明的猴子(图论--最小瓶颈生成树 模版题)
题意:有M只猴子,他们的最大跳跃距离为Ai.树林中有N棵树露出了水面,给出了它们的坐标.问有多少只猴子能在这个地区露出水面的所有树冠上觅食. 解法:由于要尽量多的猴子能到达所有树冠,便用Kruskal ...
- UVA 11354 Bond(最小瓶颈路+倍增)
题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...
- 【UVA10816】Travel in Desert (最小瓶颈路+最短路)
UVA10816 Travel in Desert 题目大意 沙漠中有一些道路,每个道路有一个温度和距离,要求s,t两点间的一条路径,满足温度最大值最小,并且长度最短 输入格式 输入包含多组数据. 每 ...
- 最小瓶颈路 Uva 534 Frogger
说明:关于Uva的题目,可以在vjudge上做的,不用到Uva(那个极其慢的)网站去做. 最小瓶颈路:找u到v的一条路径满足最大边权值尽量小 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这 ...
- POJ 2235 Frogger / UVA 534 Frogger /ZOJ 1942 Frogger(图论,最短路径)
POJ 2235 Frogger / UVA 534 Frogger /ZOJ 1942 Frogger(图论,最短路径) Description Freddy Frog is sitting on ...
- 【UVA534】Frogger 最小瓶颈路
题目大意:给定一张 N 个点的完全图,求 1,2 号节点之间的一条最小瓶颈路. 题解:可知,最小瓶颈路一定存在于最小生成树(最小瓶颈树)中.因此,直接跑克鲁斯卡尔算法,当 1,2 号节点在同一个联通块 ...
- UVa 11354 邦德(最小瓶颈路+LCA)
https://vjudge.net/problem/UVA-11354 题意: 有n个城市m条道路,每条道路有一个危险系数.先在有若干个询问,要求找到一条从s到t的路,使得途径所有边的最大危险系数最 ...
- UVA 534 - Frogger(kruskal扩展)
UVA 534 - Frogger 题目链接 题意:给定一些点.如今要求一条路径从第一个点能跳到第二个点,而且这个路径上的最大距离是最小的 思路:利用kruskal算法,每次加最小权值的边进去,推断一 ...
- CF600 div2 F.Cheap Robot(思维+最短路+最小瓶颈路)
最开始啃这题的时候我还是个不会$lca$的人,看代码看的没有一点头绪,现在趁着寒假补了很多关于图论的知识点,回头在看这题还是有很多值得学习的地方. Solution 1 (offline): 原题解: ...
随机推荐
- redhat_快捷键和shell命令操作.md
tab键 命令自动补全 history !n 执行历史记录第n条 !! 执行上一条命令 !l 最后一条以l开头的命令 alias 创建命令的别名 alias 命令别名 = "命令行" ...
- 【排序】题解_P1093奖学金
题目描述 奖学金 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金.期末,每个学生都有3门课的成绩:语文.数学.英语.先按总分从高到低排序,如果两个同学总分相同,再按语文 ...
- JavaCV更新到1.5.x版本后的依赖问题说明以及如何精简依赖包大小
javaCV全系列文章汇总整理 javacv教程文档手册开发指南汇总篇 前言 JavaCV更新到1.5.x版本,依赖包也迎来了很大变化,体积也变大了不少.很多小伙伴们反馈,之前很多1.3.x和1.4. ...
- 十八:SQL注入之堆叠及绕WAF
堆叠查询注入 (双查询注入) stacked injections(堆叠注入)从名词的含义就可以看到是一堆的SQL语句一起执行,而在真实的运用中也是这样的,我们知道在mysql中,主要是命令行中,每一 ...
- 【Oracle】row_number() over(partition by )函数用法
row_number() OVER (PARTITION BY COL1 ORDER BY COL2) 表示根据COL1分组,在分组内部根据 COL2排序,而此函数计算的值就表示每组内部排序后的顺序编 ...
- ctfhub技能树—RCE—过滤空格
打开靶机 查看页面信息 开始尝试注入 127.0.0.1 || ls 尝试绕过 127.0.0.1||ls 使用cat命令查看flag 127.0.0.11||cat<flag_10872536 ...
- 开发进阶:Dotnet Core多路径异步终止
今天用一个简单例子说说异步的多路径终止.我尽可能写得容易理解吧,但今天的内容需要有一定的编程能力. 今天这个话题,来自于最近对gRPC的一些技术研究. 话题本身跟gRPC没有太大关系.应用中,我用 ...
- CMOS 摄像头的Skipping 和 Binning 模式
在通常的摄像头中,不同的resolution对应不同的帧率.想要提高帧率就要考虑是否需要缩小视野(FOV).若不希望视野缩小,就需要减少resolution. 常用的减少resolution的两种方式 ...
- TCP客户端程序
TCP客户端程序的函数调用顺序为:socket -> connect -> send/recv socket.send和recv函数在TCP服务器程序中已经说过了,这里就不赘述了. con ...
- SpringCloud zuul 网关限流分析
最近项目中 spring cloud zuul 运用到限流功能,打算配置一下就直接使用,不过在压测与调优过程中遇到一些没有预测到的问题,附上排查与解析结果 yml.pom配置 强烈推荐,按最新gith ...