【算法•日更•第五十七期】快速傅里叶变换(FFT):从入门到放弃
▎一些用的上的东西
小编太菜了,很多东西都不会证明(主要是三角函数还没有学啊~~~)。
附上链接https://blog.csdn.net/enjoy_pascal/article/details/81478582
大家可以看看这个博主的证明。
所以小编就只提供讲解了。
▎前置知识
离散傅里叶变换,传送门。
▎FFT
在之前,一个多项式是长这个样子的:

现在我们拆一下,定义两个多项式:
f1(x)=a0+a2x+a4x2+……+an-2xn/2-1
f2(x)=a1+a3x+a5x2+……+an-1xn/2-1
显然,f(x)=f1(x2)+x·f2(x2)。

利用分治的思想,我们将ωnk和wnk+n/2分别当作x带入,易得:
f(ωnk)=f1(ωn/2k)+ωnkf2(ωn/2k)
f(wnk+n/2)=f1(ωn/2k)-ωnkf2(ωn/2k)
我们会发现只要算出f1(ωn/2k)和ωnkf2(ωn/2k),f(ωnk)和f(wnk+n/2)就迎刃而解了。
【算法•日更•第五十七期】快速傅里叶变换(FFT):从入门到放弃的更多相关文章
- 【算法•日更•第三十七期】A*寻路算法
▎写在前面 这是一种搜索算法,小编以前总是念成A乘寻路算法,没想到一直念错. 请大家都念成A星寻路算法,不要像小编一样丢人了. ▎A*寻路算法 ☞『引入』 相信大家都或多或少的玩过一些游戏吧,那么游戏 ...
- 【算法•日更•第五十期】二分图(km算法)
▎前言 戳开这个链接看看,惊不惊喜,意不意外?传送门. 没想到我的博客竟然被别人据为己有了,还没办法投诉. 这年头写个博客太难了~~~ 之前小编写过了二分图的一些基础知识和匈牙利算法,今天来讲一讲km ...
- 【算法•日更•第四十七期】Mac与windows系统的差别
小编最近装了个Mac系统,因为小编已经有笔记本可以用linux了,所以就决定在台式机上装个双系统,结果一不小心把Mac装在C盘上了,哎,说多了都是泪啊. 其实用了Mac之后才发现windows特别好用 ...
- 【算法•日更•第五十四期】知识扫盲:什么是operator?
▎前言 这个东西和迭代器长的很像,但是比迭代器常见的多. 今天就来浅谈operator. ▎定义 operator是C#.C++和pascal的关键字,它和运算符一起使用,表示一个运算符函数,理解时应 ...
- 【算法•日更•第十九期】动态规划:RMQ问题
▎前言 首先先来说一下RMB是什么,当然是人民币啦. 今天我们要学的这个东西不一般,叫做RMQ问题,那么它和RMB有什么关系呢?待小编细细说来. ▎前置技能:动态规划 不会的同志请戳这里迅速了解动态规 ...
- 【算法•日更•第二十八期】图论:强连通+Tarjan算法(一)
▎前言 一直都想学习这个东西,以为很难,结果发现也不过如此. 只要会些图论的基础就可以了. ▎强连通 ☞『定义』 既然叫强连通,那么一定具有很强的连通性. 强连通:就是指在一个有向图中,两个顶点可以互 ...
- 【算法•日更•第三十期】区间动态规划:洛谷P4170 [CQOI2007]涂色题解
废话不多说,直接上题: P4170 [CQOI2007]涂色 题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
随机推荐
- 一些matlb会用到的函数
matlab这种软件功能很强大,但是都不是常常会用到,尤其是像在学生中.每次用的时候总会把一些基本的函数忘记,还的去网上查.我之前在使用的时候也总结过,可惜在一次数据丢失中全没了(︶︹︺). 从现在开 ...
- DNA Consensus String UVA - 1368
题目链接:https://vjudge.net/problem/UVA-1368 题意:给出一组字符串,求出一组串,使与其他不同的点的和最小 题解:这个题就是一个点一个点求,利用桶排序,求出最多点数目 ...
- Crossword Answers -------行与列按序输出
题目链接:https://vjudge.net/problem/UVA-232#author=0 题意:关键句:The de nitions correspond to the rectangular ...
- Nginx实现JWT验证-基于OpenResty实现
介绍 权限认证是接口开发中不可避免的问题,权限认证包括两个方面 接口需要知道调用的用户是谁 接口需要知道该用户是否有权限调用 第1个问题偏向于架构,第2个问题更偏向于业务,因此考虑在架构层解决第1个问 ...
- let、const、var的区别
1.使用var声明的变量,其作用域为全局或者该语句所在的函数内,且存在变量提升现象. 下面使用node.js演示,也可以插入到html文件中使用以下代码 var a = 10; function te ...
- Debug HashMap
目录 1,HashMap面试必问 2,Debug源码的心得体会 3,JDK 1.7 3.1 用debug分析一个元素是如何加入到HashMap中的[jdk1.7] 3.2 用debug分析HashMa ...
- 10-9 重要的内置函数(zip、filter、map、sorted)
reverse----reversed l = [1,2,3,4,5,6] l.reverse() #不会保留原列表 print(l) l =[1,2,3,4,5,6] l2 = reversed(l ...
- PHP imagecolorclosesthwb - 取得与指定的颜色最接近的色度的黑白色的索引
imagecolorclosesthwb — 取得与指定的颜色最接近的色度的黑白色的索引.高佣联盟 www.cgewang.com 语法 int imagecolorclosesthwb (s res ...
- PHP xml_set_external_entity_ref_handler() 函数
定义和用法 xml_set_external_entity_ref_handler() 函数规定当解析器在 XML 文档中找到外部实体时被调用的函数. 如果成功,该函数则返回 TRUE.如果失败,则返 ...
- 用好这几个技巧,解决Maven Jar包冲突易如反掌
前言 大家在项目中肯定有碰到过Maven的Jar包冲突问题,经常出现的场景为: 本地运行报NoSuchMethodError,ClassNotFoundException.明明在依赖里有这个Jar包啊 ...