题目

题目描述

老师们已经知道学生喜欢睡觉,Soaring是这项记录保持者。他只会在吃饭或玩FIFA20时才会醒来。因此,他经常做关于足球的梦,在他最近的一次梦中,他发现自己成了皇家马德里足球俱乐部的总经理。

他的工作是挑选N名球员争取在下个赛季打败巴塞罗那队,但是董事会有两个特殊的要求。具体如下:

①所有运动员姓氏的长度必须不同。

②每个运动员的姓氏必须是长度比其长的所有其他运动员姓氏的连续子串

为了让工作变得简单,Soaring将潜在的球员分成N类,第i类的球员的姓氏恰好有i个字母,且每一类恰好有K个球员。

Soaring想知道有多少种不同的方法选出满足要求的N个球员。答案对(10^9^+7)取余。

题解

题目大意:有\(n\)种不同长度的字符串,每种字符串有\(k\)个,第\(i\)中字符串的长度是\(i\),现在要从\(n\)种字符串里每种选一个,使得选出的字符串都是所有长度比其长的字符串的连续字串,问有多少种选择方案,对\(10^9+7\)取模

22%

暴力从每种里选择,再暴力判断是否合法

时间复杂度\(O(k^nn^4)\),预计得分22

100%

首先我们知道,若\(a\)是\(b\)的连续字串,\(b\)是\(c\)的连续子串,那么\(a\)一定是\(c\)的连续字串

那么判断时就可以只判断\(i\)和\(i+1\)的关系,而\(i\)与\(i+1\)的长度只相差1,说明想要是连续子串,要么是末尾空一个字母,要么开头空一个字母

考虑\(dp\),设\(f[i][j]\)表示到了第\(i\)种,第\(i\)种选择第\(j\)个的方案数,那么枚举\(u\),若\(u\)是\(j\)的子串,那么转移:\(f[i][j]+=f[i-1][u]\)

答案是\(\sum_{i=1}^kf[n][i]\)

Code

#include<cstdio>
#define ll long long
#define mod 1000000007
#define N 55
#define K 1505
using namespace std;
int n,m;
ll sq,sh,ans,a[N][K][N],f[N][K];
char s[N];
ll mi(int x)
{
ll res=1;
for (int i=1;i<=x;++i)
res=res*26%mod;
return res;
}
int main()
{
freopen("player.in","r",stdin);
freopen("player.out","w",stdout);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i)
{
for (int j=1;j<=m;++j)
{
scanf("%s",s+1);
for (int k=1;k<=i;++k)
a[i][j][k]=(a[i][j][k-1]*26%mod+s[k]-'a')%mod;
}
}
for (int i=1;i<=m;++i)
f[1][i]=1;
for (int i=2;i<=n;++i)
for (int j=1;j<=m;++j)
{
sq=a[i][j][i-1];//当前字符串的1~i-1位
sh=(a[i][j][i]-mi(i-1)*a[i][j][1]%mod+mod)%mod;//当前字符串的2~i位
for (int k=1;k<=m;++k)
if (a[i-1][k][i-1]==sq||a[i-1][k][i-1]==sh/*判断是否是连续子串*/) f[i][j]=(f[i][j]+f[i-1][k])%mod;
}
for (int i=1;i<=m;++i)
ans=(ans+f[n][i])%mod;
printf("%lld\n",ans);
fclose(stdin);
fclose(stdout);
return 0;
}

【2020.12.02提高组模拟】球员(player)的更多相关文章

  1. 【2020.12.02提高组模拟】A组反思

    55,rk47 T1 赛时先想了\(trie\),想到不一定是前缀,然后就放弃转为打暴力 得分:\(RE22\) 正解是只用判断\(i\)与\(i+1\)的关系,那么只有两种情况,判断一下然后\(dp ...

  2. 【2020.12.01提高组模拟】卡特兰数(catalan)

    题目 题目描述 今天,接触信息学不久的小\(A\)刚刚学习了卡特兰数. 卡特兰数的一个经典定义是,将\(n\)个数依次入栈,合法的出栈序列个数. 小\(A\)觉得这样的情况太平凡了.于是,他给出了\( ...

  3. 【2020.12.01提高组模拟】A组反思

    105,rk45 T1 赛时一开始先打了\(m=0\)的情况,也就是普通的卡特兰数,然后打了暴力,样例过了,把样例改改就不行了,原因没有保证是枚举的是合法的出栈序列 得分:\(WA\&TLE1 ...

  4. 【2020.12.03提高组模拟】A组反思

    估计:40+10+0+0=50 实际:40+10+0+0=50 rank40 T1 赛时看到\(n,m\leq9\),我当机立断决定打表,暴力打了几个点之后发现在\(n\ne m\)且\(k\ne0\ ...

  5. 【2020.11.28提高组模拟】T1染色(color)

    [2020.11.28提高组模拟]T1染色(color) 题目 题目描述 给定 \(n\),你现在需要给整数 \(1\) 到 \(n\) 进行染色,使得对于所有的 \(1\leq i<j\leq ...

  6. 【2020.11.28提高组模拟】T2 序列(array)

    序列(array) 题目描述 ​给定一个长为 \(m\) 的序列 \(a\). 有一个长为 \(m\) 的序列 \(b\),需满足 \(0\leq b_i \leq n\),\(\sum_{i=1}^ ...

  7. 【2020.11.30提高组模拟】剪辣椒(chilli)

    剪辣椒(chilli) 题目描述 在花园里劳累了一上午之后,你决定用自己种的干辣椒奖励自己. 你有n个辣椒,这些辣椒用n-1条绳子连接在一起,任意两个辣椒通过用若干个绳子相连,即形成一棵树. 你决定分 ...

  8. 【2020.11.30提高组模拟】删边(delete)

    删边(delete) 题目 题目描述 给你一棵n个结点的树,每个结点有一个权值,删除一条边的费用为该边连接的两个子树中结点权值最大值之和.现要删除树中的所有边,删除边的顺序可以任意设定,请计算出所有方 ...

  9. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

随机推荐

  1. 微信小程序——【百景游戏小攻略】

    微信小程序--[百景游戏小攻略] 本次课程小项目中的图片以及文章还未获得授权!请勿商用!未经授权,请勿转载! 博客班级 https://edu.cnblogs.com/campus/zjcsxy/SE ...

  2. day82:luffy:课程详情页面显示&章节和课时显示&视频播放组件&CKEditor富文本编辑器

    目录 1.初始课程详情页面 2.视频播放组件 3.课程详情页面后端接口实现 4.课程详情页面-前端 5.CKEditor富文本编辑器 6.课程章节和课时显示-后端接口 7.课程章节和课时显示-前端 1 ...

  3. 微信小程序授权页面

    这里也是比较简单的 直接复制粘贴就可以用,可能图片位置不对.. <template> <view id="imporwer"> <image src= ...

  4. Inception系列之Batch-Normalization

    训练深度神经网络非常复杂,因为在训练过程中,随着先前各层的参数发生变化,各层输入的分布也会发生变化,图层输入分布的变化带来了一个问题,因为图层需要不断适应新的分布,因此训练变得复杂,随着网络变得更深, ...

  5. I am coming back

    时隔两年,我回来了,回到这个我梦开始的地方,带着一个新的身份--研究生!

  6. (数据科学学习手札98)纯Python绘制满满艺术感的山脊地图

    本文示例代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 下面的这幅图可能很多读者朋友们都看到过,这 ...

  7. 基于CSS3伪元素和动画绘制旋转太极图

    通过CSS3的动画知识来完成一个旋转的太极. 任务 1.创建一个div,用CSS控制其大小.边框.位置等,做成一个静态的圆形,一半为红色一半为白色. 2.用div的伪元素位置两个圆环并放置核实位置,使 ...

  8. Goldstone's theorem(转载)

    Goldstone's theorem是凝聚态物理中的重要定理之一.简单来说,定理指出:每个自发对称破缺都对应一个无质量的玻色子(准粒子),或者说一个zero mode. 看过文章后,我个人理解这其实 ...

  9. Go知识点记录

    1.go中 堆的实现:https://ieevee.com/tech/2018/01/29/go-heap.html#3-containerheap%E5%8F%AF%E4%BB%A5%E7%94%A ...

  10. 分布式监控系统之Zabbix基础

    1.为什么要使用监控系统? 我们知道一个系统不管怎么讲它都会出故障,我们为了保证线上业务的最大化的可用性,通常我们要给关键业务做高可用:做高可用的目的是为了让故障发生时,能够有一个备用的解决方案,将故 ...