【LOJ】#2210. 「HNOI2014」江南乐
LOJ#2210. 「HNOI2014」江南乐
感觉是要推sg函数
发现\(\lfloor \frac{N}{i}\rfloor\)只有\(O(\sqrt{N})\)种取值
考虑把这些取值都拿出来,能取到这个值的\(i\)是一个区间\([l,r]\)
如果\(r - l + 1 = 1\),那么直接算这个数的答案即可(\(\lfloor \frac{N}{i}\rfloor\)的石子有奇数堆还是偶数堆,\(\lfloor \frac{N}{i}\rfloor + 1\)的石子有奇数堆还是偶数堆,异或起来即可)
如果\(r - l + 1 > 1\),证明这个区间里既有奇数又有偶数
其中\(\lfloor \frac{N}{i}\rfloor + 1\)有\(N - i\lfloor \frac{N}{i} \rfloor\)堆
\(\lfloor \frac{N}{i}\rfloor\)有\(i - (N - i\lfloor \frac{N}{i} \rfloor)\)堆
由于\(N\)和\(\lfloor \frac{N}{i}\rfloor\)奇偶性确定了,我们只要枚举两种不同奇偶性的\(i\)计算两种情况的游戏值就可以了
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int T,F;
int sg[100005],N;
unordered_map<int,int> zz;
void Process() {
for(int i = 0 ; i < F ; ++i) {
sg[i] = 0;
}
for(int x = F ; x <= 100000 ; ++x) {
zz.clear();
for(int i = 2 ; i <= x ; ++i) {
int r = x / (x / i);
int t = x / i;
if(r - i + 1 == 1) {
int k = 0;
if((x % r) & 1) k ^= sg[x / i + 1];
if((r - (x % r)) & 1) k ^= sg[x / i];
zz[k] = 1;
}
else {
if(t % 2 == 0) {
if(x & 1) {
zz[sg[x / i + 1] ^ sg[x / i]] = 1;
zz[sg[x / i + 1]] = 1;
}
else zz[sg[x / i]] = 1;
}
else {
if(x & 1) {
zz[sg[x / i + 1] ^ sg[x / i]] = 1;
zz[sg[x / i]] = 1;
}
else zz[sg[x / i + 1]];
}
}
i = r;
}
while(zz.count(sg[x])) sg[x]++;
}
}
void Solve() {
int a,ans = 0;
read(N);
for(int i = 1 ; i <= N ; ++i) {
read(a);
ans ^= sg[a];
}
if(ans) putchar('1'),space;
else putchar('0'),space;
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(T);read(F);
Process();
for(int i = 1 ; i <= T ; ++i) {
Solve();
}
return 0;
}
【LOJ】#2210. 「HNOI2014」江南乐的更多相关文章
- LOJ #2205. 「HNOI2014」画框 解题报告
#2205. 「HNOI2014」画框 最小乘积生成树+KM二分图带权匹配 维护一个\((\sum A,\sum B)\)的匹配下凸包,答案在这些点中产生. 具体的,凸包两端可以直接跑单独的\(A\) ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- DES 加密 转码 脱敏
from pyDes import des, CBC, PAD_PKCS5 import binascii # 秘钥 KEY = 'mHAxsLYz' from pyDes import des, C ...
- 5.Python3列表和元组
5.1序列 在python3中序列结构主要有列表.元组.集合.字典和字符串,对于这些序列有以下通用操作. 5.1.1 索引 序列中的每一个元素都有 一个编号,也称为索引.这个索引是从0开始递增的,即下 ...
- KCF追踪方法流程原理
读"J. F. Henriques, R. Caseiro, P. Martins, J. Batista, 'High-speed tracking with kernelized cor ...
- selenium反爬机制
使用selenium模拟浏览器进行数据抓取无疑是当下最通用的数据采集方案,它通吃各种数据加载方式,能够绕过客户JS加密,绕过爬虫检测,绕过签名机制.它的应用,使得许多网站的反采集策略形同虚设.由于se ...
- java中 什么是反射?
JAVA反射机制是在运行状态中,对于任意一个实体类,都能够知道这个类的所有属性和方法: 对于任意一个对象,都能够调用它的任意方法和属性:这种动态获取信息以及动态调用对象方法的功能称为java语言的反射 ...
- 微信小程序wx.request的简单封装
前言 之前写小程序,每次请求后台时都直接调用原生的API,wx.request,每次都要写url,data,回调函数等,正好前段时间,小程序项目需要添加新内容,趁此机会,做一个封装的请求工具,比较简单 ...
- 一键分享QQ、微信、微博等
github上找到的,合并了一个二维码在线支持API,直接修改样式可用. 二维码API说明网址:http://www.liantu.com/pingtai/ <html> <head ...
- GO --- 将Reader 或者 ReadCloser 转化为 ReadSeeker
原因: ReadSeeker 封装了Seek()方法,这个方法要求资源的任何位置都能被定位,例如存储在磁盘里文件,你可以随时读取文件的任意位置.而response.Body 是通过TCP连接从网络中读 ...
- 图片上传利用request.getInputStream()获取文件流时遇到的问题
图片上传功能是我们web里面经常用到的,获得的方式也有很多种,这里我用的是request.getInputStream()获取文件流的方式.想要获取文件流有两种方式,附上代码 int length = ...
- C# - ZIP 压缩流
C# - ZIP 压缩流 参考资料 https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.ziparchive?view= ...