[Luogu] 最小差值生成树
https://www.luogu.org/recordnew/show/6125570
思路就是巧妙的枚举所有的生成树,取最优值
首先按照边权排序
找出第一颗最小生成树(l, r),其中l表示最小边的编号,r表示最大边的编号
然后从r+1号边开始倒序枚举各边,求出第二颗最小生成树(当然也可能不存在)(l_2, r_2), r_2 = r + 1.
这样的话就省去了多条最小边的枚举
比如若从2 -- l_2-1中任选一条边作为最小边开始查询最大生成树,那么最大边一定为r_2
这样的话差值不会比(l_2, r_2)这颗生成树更优,所以就简化了算法
然后从将l_2+1号边作为最小边开始枚举,依次进行下去
#include <iostream>
#include <cstdio>
#include <algorithm> using namespace std;
const int N = 5e4 + ; #define gc getchar() int fa[N];
struct Node{int u, v, w;} G[N << ];
int n, m, Answer = ; inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} inline bool cmp(Node a, Node b) {return a.w < b.w;}
int get_fa(int x) {return fa[x] == x ? x : fa[x] = get_fa(fa[x]);}
void Printf() {cout << Answer; exit();} void dfs(int start, int how) {
for(int i = ; i <= n; i ++) fa[i] = i;
int tot = , Maxn = , Minn = , Nxt;
if(how % ) {//cong xiao dao da
for(int i = start; i <= m; i ++) {
int fa_u = get_fa(G[i].u), fa_v = get_fa(G[i].v);
if(fa_u != fa_v) {
fa[fa_u] = fa_v;
tot ++;
if(tot == n - ) {Maxn = G[i].w; Nxt = i; break;}
}
}
if(!Maxn) Printf();
Answer = min(Answer, Maxn - G[start].w);
} else {
for(int i = start; i >= ; i --) {
int fa_u = get_fa(G[i].u), fa_v = get_fa(G[i].v);
if(fa_u != fa_v) {
fa[fa_u] = fa_v;
tot ++;
if(tot == n - ) {Minn = G[i].w; Nxt = i; break;
}
}
}
if(!Minn) Printf();
Answer = min(Answer, G[start].w - Minn);
}
dfs(Nxt + , how + );
} int main() {
n = read();
m = read();
for(int i = ; i <= m; i ++) G[i].u = read(), G[i].v = read(), G[i].w = read();
sort(G + , G + m + , cmp);
dfs(, );
return ;
}
[Luogu] 最小差值生成树的更多相关文章
- [luogu4234]最小差值生成树
[luogu4234]最小差值生成树 luogu 从小到大枚举边,并连接,如果已连通就删掉路径上最小边 lct维护 \(ans=min(E_{max}-E_{min})\) #include<b ...
- LuoguP4234_最小差值生成树_LCT
LuoguP4234_最小差值生成树_LCT 题意: 给出一个无向图,求最大的边权减最小的边权最小的一棵生成树. 分析: 可以把边权从大到小排序,然后类似魔法森林那样插入. 如果两点不连通,直接连上, ...
- P4234 最小差值生成树
题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...
- 【Luogu】P4234最小差值生成树(LCT)
题目链接 能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的. 本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起 ...
- Luogu P4234 最小差值生成树
题意 给定一个 \(n\) 个点 \(m\) 条边的有权无向图,求出原图的一棵生成树使得该树上最大边权与最小边权的差值最小. \(\texttt{Data Range:}1\leq n\leq 5\t ...
- Luogu 4234 最小差值生成树 - LCT 维护链信息
Solution 将边从小到大排序, 添新边$(u, v)$时 若$u,v$不连通则直接添, 若连通则 把链上最小的边去掉 再添边. 若已经加入了 $N - 1$条边则更新答案. Code #incl ...
- luogu 4234 最小差值生成树 LCT
感觉码力严重下降~ #include <bits/stdc++.h> #define N 400006 #define inf 1000000000 #define setIO(s) fr ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- 洛谷.4234.最小差值生成树(LCT)
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...
随机推荐
- 方法引用(method reference)
目录 方法引用(method reference) 1. 含义 2. 分类 3. 总结 方法引用(method reference) 1. 含义 方法引用实际上是 Lambda 表达式的一种语法糖. ...
- (三)Redis之数据结构概念以及数据结构之字符串
一.数据结构 五种数据类型: 字符串(String) 字符串列表(list) 有序字符串集合(sorted set) 哈希(hash) 字符串集合(set) 二.数据结构之字符串 二进制安全的,存入和 ...
- 双重检查加锁机制(并发insert情况下数据重复插入问题的解决方案)
双重检查加锁机制(并发insert情况下数据重复插入问题的解决方案) c#中单例模式和双重检查锁 转:https://blog.csdn.net/zhongliangtang/article/deta ...
- 使用swagger在netcorewebapi项目中自动生成文档
一.背景 随着前后端分离模式大行其道,我们需要将后端接口撰写成文档提供给前端,前端可以查看我们的接口,并测试,提高我们的开发效率,减少无效的沟通.在此情况下,通过代码自动生成文档,这种需求应运而生,s ...
- IdentityServer4同时使用多个GrantType进行授权和IdentityModel.Client部分源码解析
首先,介绍一下问题. 由于项目中用户分了三个角色:管理员.代理.会员.其中,代理又分为一级代理.二级代理等,会员也可以相互之间进行推荐. 将用户表分为了两个,管理员和代理都属于后台,在同一张表,会员单 ...
- javascript新特性
让我们看看javascript中的一些新特性.本文将介绍它们的语法和相关链接,以帮助读者及时了解它们的进展.我们将通过编写一个小测试项目来演示如何快速使用这些新功能! 关于提案 提案分为五个阶段.有关 ...
- K2 BPM_“选BPM还是RPA?”,这不是一道单选题_全业务流程管理专家
在我们和企业讨论流程自动化的时候,经常会被问到一个问题,“公司目前正在调研市面上的业务流程自动化产品,我们已经把选择范围缩小到了BPM和RPA之间.我们应该怎么选择?BPM能做的好像RPA都能做到.” ...
- ASIHTTPRequest源码简单分析
1.前言 ASIHttprequest 是基于CFNetwork的,由于CFNetwork是比较底层的http库,功能比较少,因此,在ASIHttprequest中实现了http协议中比 ...
- 阿里P7分享如何面对枯燥的源码
一个软件开发人员,工作到了一定的年限(一般是3.4年左右),如果他还没学会阅读源码,那么他就会遇到瓶颈.因为到了这个时候的开发,他应该不仅仅只会做那些 CURD 的业务逻辑,而应该会根据公司的实际情况 ...
- Image Processing and Analysis_21_Scale Space:Edge Detection and Ridge Detection with Automatic Scale Selection——1998
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...