讲到 EM 算法就不得不提极大似然估计,我之前讲过,请参考我的博客

下面我用一张图解释极大似然估计和 EM 算法的区别

EM 算法引例1-抛3枚硬币

还是上图中抛硬币的例子,假设最后结果正面记为1,反面记为0,抛10次,结果为 1101001011;

下面我用数据公式解释下这个例子和 EM 算法;

三硬币模型可以写作

θ 表示模型参数,即 三枚硬币正面的概率,用 π p q 表示;

y 表示观测随机变量,取值为 0,1;

z 表示隐随机变量,在本例中就是 A 的正反面,或者是选择 B 还是不选择 B;

P(y|θ) 表示该参数下,y 出现的概率;

剩下的不多解释,很容易理解

将观测变量表示为 Y=(Y1,Y2...YN),将隐变量表示为 Z=(Z1,Z2...ZN),则观测变量的似然函数为

n 是实验次数

连乘取 log,转换成 θ 的对数似然函数

这个式子是问题的本质,但是它没有解析解,只能通过迭代求解

EM 算法就是一种迭代的算法

迭代首先要有个初值,即 θ 的初始化

假设我们已经迭代了 i 次,获得新的 θ

接下来要求 i+1 次的 θ      【这里就是要建立迭代关系,很重要的一步】

重点是得到隐随机变量的期望,根据 θi 得到第 i+1 次 B 出现的概率

  【B/B+C】

上式用概率表示为 P(B|y,θ) ,也就是在参数为 θ 时,基于 y 计算 B 的概率    【上式是李航教材里这么写的,个人认为应该是把所有观测变量 带入 该式子,然后求平均,也就是 B 的期望】

这是 B 出现的概率,也就是预估,或者说期望,Exception,也就是 EM 的 E 步

1-ui+1 也就是 C 出现的概率;

然后就可以根据观测变量,重新计算 θ

π 代表 A 出现正面的概率,等价于隐随机变量是 B 的概率,实验 n 次,求均值即可

p 代表 B 出现正面的概率,即隐变量是 B,然后观测变量是 1

q 代表 C 出现正面的概率,即隐变量是 C,然后观测变量是 1

似然函数解析

这一步使得 θ 的对数似然函数更大,即 EM 的 M 步,max

有了新的 θ,继续迭代即可,直至 θ 不变或者 θi+1i<阈值,停止迭代

笔者展示了如下迭代

我想强调的是 初值 对结果有影响,也就是 EM 算法对初值敏感

小结

EM 算法引例2-抛2枚硬币

有两枚硬币 A B,每次从两枚硬币中随机取一个,抛 10 次,记录每次正反面,总共取 5 次,也就是抛 50 次;

目标是预测 A B 各自正面朝上的概率

抛开这个问题,我们考虑一下,随便拿个硬币,抛100次,正面出现60次,反面出现40次,那这枚硬币正面朝上的概率岂不就是 0.6,是的,然后回到我们的实验

极大似然

假如我们知道每次取得是 A 还是 B,那就没有隐变量,转换成极大似然问题,很简单;

EM

现在我们不知道取出来的是 A 还是 B,就有了隐变量,转换成 EM 问题

EM 算法

由以上两个例子,我们引出 EM 算法的具体描述

EM 算法的收敛

EM算法是可以正面收敛性的,后续在补充吧,毕竟麻烦

参考资料:

https://zhuanlan.zhihu.com/p/36331115  人人都懂EM算法

https://www.zhihu.com/question/40797593/answer/275171156

https://zhuanlan.zhihu.com/p/78311644

https://zhuanlan.zhihu.com/p/60376311  猴子也能理解的EM算法

https://blog.csdn.net/u014157632/article/details/65442165

《统计学习方法》 李航

《机器学习》 周志华

EM 算法(一)-原理的更多相关文章

  1. EM算法原理总结

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...

  2. EM算法及其应用(一)

    EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 EM算法是期望最大化 (Expectation Maximization) 算法的简称,用于含有隐变量的情况下,概率 ...

  3. 机器学习中的EM算法具体解释及R语言实例(1)

    最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開 ...

  4. EM算法原理简析——图解

    一. 扯淡 转眼间毕业快一年了,这期间混了两份工作,从游戏开发到算法.感觉自己还是喜欢算法,可能是大学混了几年算法吧!所以不想浪费基础... 我是个懒得写博客的人,混了几年coding,写的博客不超过 ...

  5. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

  6. EM算法原理以及高斯混合模型实践

    EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然 ...

  7. EM算法原理

    在聚类中我们经经常使用到EM算法(i.e. Estimation - Maximization)进行參数预计, 在该算法中我们通过函数的凹/凸性,在estimation和maximization两步中 ...

  8. EM算法原理详解

    1.引言 以前我们讨论的概率模型都是只含观测变量(observable variable), 即这些变量都是可以观测出来的,那么给定数据,可以直接使用极大似然估计的方法或者贝叶斯估计的方法:但是当模型 ...

  9. EM算法--原理

    EM算法即期望最大化(Expection Maximization)算法,是一种最优化算法,在机器学习领域用来求解含有隐变量的模型的最大似然问题.最大似然是一种求解模型参数的方法,顾名思义,在给定一组 ...

随机推荐

  1. Latex里的引用定理只出现编号,不出现定理名?

    在前面先定义了: \newtheorem{prb}{Problem Formulation} 然后: \begin{prb} \label{problem} xx\end{prb}效果: Proble ...

  2. 微信小程序_(组件)flex布局

    小程序建议使用flex布局进行排版 flex是一个盒装弹性布局 flex是一个容器,所有子元素都是他的成员 定义布局:display:flex flex容器的属性: 一.flex-direction: ...

  3. 安装java1.8.0

    安装java 1.删除自带jdk rpm -e --nodeps `rpm -qa | grep java` 2.查看yum库中有哪些jdk版本. yum search java | grep jdk ...

  4. python-numpy-1

    mean() mean() 函数定义: numpy.``mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globa ...

  5. Amaple.js框架详细介绍

    Amaple · 体验优先的JavaScript单页框架 Amaple (点此查看Github仓库)是专为单页web应用而设计的基于页面模块化的JavaScript框架,它可使开发者快速开发单页web ...

  6. C#, Java, PHP, Python和Javascript几种语言的AES加密解密实现

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  7. WARNING: inbound connection timed out (ORA-3136)

    WARNING: inbound connection timed out (ORA-3136) WARNING: inbound connection timed out (ORA-3136) Ta ...

  8. [zookeeper]ZooInspector的使用

    一.背景   Zookeeper作为常用的集群协调者组件被广泛应用,尤其是在大数据生态圈中:   Zookeeper集群存储各个节点信息,包括:Hadoop.Hbase.Storm.Kafka等等: ...

  9. Java计算器的图形界面应用程序

      JAVA计算器的图形界面应用程序 题目简介: 整体分析: 实验代码: /*部分使用插件做界面*/ import java.awt.EventQueue; import javax.swing.JB ...

  10. JetBrain系列学生免费授权

    1.访问网址:https://www.jetbrains.com/zh/student/ 2.往下滚动,点击立即申请 3.填写邮箱信息 4.确认后,跳转到Thank you页面,上面说已经给注册邮箱发 ...