1、data_range生成时间范围

a) pd.date_range(start=None, end=None, periods=None, freq='D')
    start和end以及freq配合能够生成start和end范围内以频率freq的一组时间索引
    start和periods以及freq配合能够生成从start开始的频率为freq的periods个时间索引
  
    freq可选择:
      

  b)将时间字符串转为时间序列  

    使用pandas提供的方法把时间字符串转化为时间序列

    df["timeStamp"] = pd.to_datetime(df["timeStamp"],format=""),其中format参数大部分情况下可以不用写

  c)DataFrame中使用时间序列   

    index=pd.date_range("20170101",periods=10) #生成时间序列

    df = pd.DataFrame(np.random.rand(10),index=index) #将时间序列指定为index

2、重采样

重采样:指的是将时间序列从一个频率转化为另一个频率进行处理的过程,将高频率数据转化为低频率数据为降采样,低频率转化为高频率为升采样
pandas提供了一个resample的方法来帮助我们实现频率转化 使用案例:
  

3、重组时间序列:主要将数据中的分离的时间字段,重组为时间序列,并指定为index

#把分开的时间字符串通过periodIndex的方法转化为pandas的时间类型
period = pd.PeriodIndex(year=df["year"],month=df["month"],day=df["day"],hour=df["hour"],freq="H")
print(period)
df["datetime"] = period #把datetime 设置为索引
df.set_index("datetime",inplace=True)

pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)的更多相关文章

  1. pandas学习系列(一):时间序列

    最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库 发现pandas库功能的确很强大,因此在这记录我的pandas学习之路. # -*- cod ...

  2. Pandas 基础(14) - DatetimeIndex and Resample

    这一小节要介绍两个内容, 一个是 DatetimeIndex 日期索引, 另一个是 Resample, 这是一个函数, 可以通过参数的设置, 来调整数据的查询条件, 从而得到不同的结果. 首先看下关于 ...

  3. 重采样Resample 的一些研究记录。

    最近项目有需要重采样算法,先找了一下,主流的就是几个开源算法,Speex / Opus / ffmpeg / sox 1.最早的事Speex,算法源自CCRMA(Center for Computer ...

  4. 03. Pandas 2| 时间序列

    1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...

  5. Pandas基础(十一)时间序列

    1. pandas时间序列:时间索引 2. pandas时间序列数据结构 2.1 定期序列 3. 频率和偏移 4. 重采样,转移,加窗口 4.1 重采样及频率转换 4.2 时间移动 4.3 滚动窗口 ...

  6. Pandas 时间序列

    # 导入相关库 import numpy as np import pandas as pd 在做金融领域方面的分析时,经常会对时间进行一系列的处理.Pandas 内部自带了很多关于时间序列相关的工具 ...

  7. pandas时间序列常用操作

    目录 一.时间序列是什么 二.时间序列的选取 三.时间序列的生成 四.时间序列的偏移量 五.时间前移或后移 五.时区处理 六.时期及算术运算 七.频率转换 一.时间序列是什么 时间序列在多个时间点观察 ...

  8. 《python for data analysis》第十章,时间序列

    < python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.time ...

  9. ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数

    https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...

随机推荐

  1. SQL 语句外键 a foreign key constraint fails

    queryRunner.update("SET FOREIGN_KEY_CHECKS = 0;"); queryRunner.update(sql, pid); queryRunn ...

  2. win32 控件的使用

    我们建立的项目都是基于对话框的win32项目,和主窗口一样对话框也是窗口的一种类型所以区别不是很大,所以我们再下面讲一下控件的使用(里面不要使用char,要开始使用WCHAR,他的很多函数都是wcs. ...

  3. mysql数据库:分表、多表关联、外键约束、级联操作

    一.分表.外键.级联.多对一 二.多对多 三.一对一 一.分表.外键.级联.多对一 将部门数据与员工数据放到同一张表中会造成 数据重复 结构混乱 扩展维护性差 需要分表 create table de ...

  4. js 中判断对象是否为空

      var dd = function (S_object, name) { console.log(name + '第一步执行结果:' + S_object); if (typeof S_objec ...

  5. 阿里云端安装mysql

    首先查看系统版本,是64位的centos7 file /sbin/init 安装指南如下 https://www.cnblogs.com/thinkingandworkinghard/p/671125 ...

  6. 二进制;16进制; Byte , Python的bytes类; Base64数据编码; Bae64模块;

    参考:中文维基 二进制 位操作(wiki) Byte字节 互联网数据处理:Base64数据编码 Python的模块Base64 16进制简介 python: bytes对象 字符集介绍:ascii 二 ...

  7. 一道经典JS面试题

    超过80%的候选人对下面这道JS面试题的回答情况连及格都达不到.这究竟是怎样神奇的一道JS面试题?他考察了候选人的哪些能力?对正在读本文的你有什么启示? 不起眼的开始 招聘前端工程师,尤其是中高级前端 ...

  8. 2. SaltStack数据系统: Grains、Pillar

    1. SaltStack数据系统 Grains (谷物) Pillar (支柱) 2.Grains Grains存放着Salt命令启动时收集的信息,运行时不收集 2.1  信息查询 收集资产 网卡,i ...

  9. SQL Server代码的一种学习方法

    使用SQL Server Management Studio的操作过程中,界面上方都可以生成sql脚本代码. 如新建数据库时: CREATE DATABASE [db_New] ON PRIMARY ...

  10. web大文件上传断点续传源码

    总结一下大文件分片上传和断点续传的问题.因为文件过大(比如1G以上),必须要考虑上传过程网络中断的情况.http的网络请求中本身就已经具备了分片上传功能,当传输的文件比较大时,http协议自动会将文件 ...