pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)
1、data_range生成时间范围
a) pd.date_range(start=None, end=None, periods=None, freq='D')
start和end以及freq配合能够生成start和end范围内以频率freq的一组时间索引
start和periods以及freq配合能够生成从start开始的频率为freq的periods个时间索引
freq可选择:
b)将时间字符串转为时间序列
使用pandas提供的方法把时间字符串转化为时间序列
df["timeStamp"] = pd.to_datetime(df["timeStamp"],format=""),其中format参数大部分情况下可以不用写
c)DataFrame中使用时间序列
index=pd.date_range("20170101",periods=10) #生成时间序列
df = pd.DataFrame(np.random.rand(10),index=index) #将时间序列指定为index
2、重采样
重采样:指的是将时间序列从一个频率转化为另一个频率进行处理的过程,将高频率数据转化为低频率数据为降采样,低频率转化为高频率为升采样
pandas提供了一个resample的方法来帮助我们实现频率转化 使用案例:
3、重组时间序列:主要将数据中的分离的时间字段,重组为时间序列,并指定为index
#把分开的时间字符串通过periodIndex的方法转化为pandas的时间类型
period = pd.PeriodIndex(year=df["year"],month=df["month"],day=df["day"],hour=df["hour"],freq="H")
print(period)
df["datetime"] = period #把datetime 设置为索引
df.set_index("datetime",inplace=True)
pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)的更多相关文章
- pandas学习系列(一):时间序列
最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库 发现pandas库功能的确很强大,因此在这记录我的pandas学习之路. # -*- cod ...
- Pandas 基础(14) - DatetimeIndex and Resample
这一小节要介绍两个内容, 一个是 DatetimeIndex 日期索引, 另一个是 Resample, 这是一个函数, 可以通过参数的设置, 来调整数据的查询条件, 从而得到不同的结果. 首先看下关于 ...
- 重采样Resample 的一些研究记录。
最近项目有需要重采样算法,先找了一下,主流的就是几个开源算法,Speex / Opus / ffmpeg / sox 1.最早的事Speex,算法源自CCRMA(Center for Computer ...
- 03. Pandas 2| 时间序列
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...
- Pandas基础(十一)时间序列
1. pandas时间序列:时间索引 2. pandas时间序列数据结构 2.1 定期序列 3. 频率和偏移 4. 重采样,转移,加窗口 4.1 重采样及频率转换 4.2 时间移动 4.3 滚动窗口 ...
- Pandas 时间序列
# 导入相关库 import numpy as np import pandas as pd 在做金融领域方面的分析时,经常会对时间进行一系列的处理.Pandas 内部自带了很多关于时间序列相关的工具 ...
- pandas时间序列常用操作
目录 一.时间序列是什么 二.时间序列的选取 三.时间序列的生成 四.时间序列的偏移量 五.时间前移或后移 五.时区处理 六.时期及算术运算 七.频率转换 一.时间序列是什么 时间序列在多个时间点观察 ...
- 《python for data analysis》第十章,时间序列
< python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.time ...
- ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...
随机推荐
- Scala获取main函数参数,idea演示
1 代码示范 /** * @author zhangjin * @create 2019-06-09 11:15 */ object TestMarnArgs { def main(args: Arr ...
- CAN学习方法(知乎)
作者:心机之花链接:https://www.zhihu.com/question/26776219/answer/244433861来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...
- ssh connection refused 问题
以下内容引用自:ephererid的文章: https://segmentfault.com/a/1190000014532520 问题 在使用ssh连接时出现: $ ssh localhost ss ...
- 4.Shell 判断用户的参数
1.Shell 判断用户的参数 系统在执行mkdir命令时会判断用户输入的信息,即判断用户指定的文件夹名称是否已经存在,如果存在则提示报错:反之则自动创建. Shell脚本中的条件测试语法可以判断表达 ...
- 【安徽集训】Entropy
出题人罗哲正是神爷 Orz Description 这是一道披着交互题外衣的通信题,只支持 C++. 你需要实现 \(2\) 个函数. 交互库先给第一个函数传入一个参数 \(n\),你加密得到的 \( ...
- codeforces 576C Points on Plane 相邻两点的欧拉距离
题意:给出n个点,要求排序后,相邻两点的欧拉距离之和小于等于2.5e9做法:由于0≤ xi, yi ≤ 1e6,所以可以将x<=1000的点分成一份,1000<x<=2000的点分成 ...
- mongodb单机搭建
参考网站:http://www.runoob.com/mongodb/mongodb-linux-install.html 1.下载 https://www.mongodb.com/download- ...
- .npy文件怎么打开
import numpy as np test = np.load(r'C:\Users\SAM\PycharmProjects\TEAMWORK\Preprocess_3D\muchdata-50- ...
- Java-DealString工具类
import java.text.NumberFormat; import java.util.Date; import java.util.Locale; import java.util.Stri ...
- SpringBoot AOP介绍
说起spring,我们知道其最核心的两个功能就是AOP(面向切面)和IOC(控制反转),这边文章来总结一下SpringBoot如何整合使用AOP. 一.示例应用场景:对所有的web请求做切面来记录日志 ...

