为方便收藏学习,转载自:https://www.jb51.net/article/158168.htm

本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下

1.导入标准库

1
2
3
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

2.导入数据集

1
2
3
4
5
dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件
#创建一个包含所有自变量的矩阵,及因变量的向量
#iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。
X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。
y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据dataset.
z = dataset.iloc[:, 0:8]  # 选取数据,选取每行的前7列。注意这里不包括第8列。
w = dataset.iloc[:, 8]     #选取数据,选取我每行的第8列。和上一行进行相比,这是在取过前7行之后,只取第八列。
上述的意思可以这样考虑,选取数据进行训练,前7列是特征,第8列是标签。

3.缺失数据

1
2
3
4
5
from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理
#Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])#拟合fit
X[:, 1:3] = imputer.transform(X[:, 1:3])

4.分类数据

1
2
3
4
5
6
7
8
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder_X=LabelEncoder()
X[:,0]=labelencoder_X.fit_transform(X[:,0])
onehotencoder=OneHotEncoder(categorical_features=[0])
X=onehotencoder.fit_transform(X).toarray()
#因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字
labelencoder_y=LabelEncoder()
y=labelencoder_y.fit_transform(y)

5.将数据集分为训练集和测试集

1
2
3
4
5
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
#X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量)
#训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重
#random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集

6.特征缩放

1
2
3
4
5
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化))
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放
X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test

7.数据预处理模板

(1)导入标准库
(2)导入数据集
(3)缺失和分类很少遇到
(4)将数据集分割为训练集和测试集
(5)特征缩放,大部分情况下不需要,但是某些情况需要特征缩放

以上所述是给大家介绍的Python数据预处理详解整合。

Python----数据预处理代码实例的更多相关文章

  1. Python数据预处理:机器学习、人工智能通用技术(1)

    Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...

  2. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  3. python数据预处理for knn

    机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...

  4. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  5. Python数据预处理之清及

    使用Pandas进行数据预处理 数据清洗中不是每一步都是必须的,按实际需求操作. 内容目录 1.数据的生成与导入 2.数据信息查看 2.1.查看整体数据信息 2.2.查看数据维度.列名称.数据格式 2 ...

  6. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  7. Python数据预处理:使用Dask和Numba并行化加速

    如果你善于使用Pandas变换数据.创建特征以及清洗数据等,那么你就能够轻松地使用Dask和Numba并行加速你的工作.单纯从速度上比较,Dask完胜Python,而Numba打败Dask,那么Num ...

  8. python数据预处理和特性选择后列的映射

    我们在用python进行机器学习建模时,首先需要对数据进行预处理然后进行特征工程,在这些过程中,数据的格式可能会发生变化,前几天我遇到过的问题就是: 对数据进行标准化.归一化.方差过滤的时候数据都从D ...

  9. Python数据预处理—训练集和测试集数据划分

    使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset 该函数为sklearn.cross_validation.train_test_split,用法如下: > ...

随机推荐

  1. IDEA八条配置修改

    IDEA版本:IntelliJ IDEA 2019.2.1 x64 八条配置修改: 自动编译开关 忽略大小写开关 智能导包开关 悬浮提示开关 取消单行显示tabs的操作 项目文件编码 滚轴修改字体大小 ...

  2. Unity与Android之间的交互之AndroidManifest

    https://blog.csdn.net/qq_15003505/article/details/70231975 AndroidManifest,中文名一般称之为清单文件.它描述了应用程序的组件的 ...

  3. visual studio code(vs code) 编译、运行、调试程序(调用g++)

    g++的安装过程忽略,记不清有没有"安装路径不能有空格"这种问题. 网上翻了几个博客,找到的配置文件在g++下都不能运行,遂折腾. 安装vscode与插件 插件为ms-vscode ...

  4. rabbitmq 删除所有队列及服务重启脚本

    #!/bin/bash # 删除元数据 rm -rf /var/lib/rabbitmq/mnesia # 重启rabbitmq rabbitmqctl stop systemctl restart ...

  5. dell如何安装Win10/Ubuntu双系统

    原文:https://www.cnblogs.com/askDing/p/10477345.html 测试环境: DELL PRECISION 7510: CPU:Intel Core i5-6300 ...

  6. 2018-2019-2 20165209 《网络对抗技术》Exp9: Web安全基础

    2018-2019-2 20165209 <网络对抗技术>Exp9: Web安全基础 1 基础问题回答和实验内容 1.1基础问题回答 (1)SQL注入攻击原理,如何防御? 原理:SQL注入 ...

  7. python socketpool:通用连接池

    简介 在软件开发中经常要管理各种“连接”资源,通常我们会使用对应的连接池来管理,比如mysql数据库连接可以用sqlalchemy中的池来管理,thrift连接可以通过thriftpool管理,red ...

  8. eclipse手动添加本地jar包到本地maven仓库

    在使用maven进行构建项目时,有时候中央仓库不包含所需的jar包,就需要下载到本地后手动添加到本地仓库中.这里介绍下利用eclipse进行本地jar安装到maven本地仓库. 在Eclipse项目中 ...

  9. Android仿微信底部选项卡

    第一步 添加依赖 dependencies { compile 'com.yinglan.alphatabs:library:1.0.5' } 第二步 布局使用 <?xml version=&q ...

  10. python代码-leetcode1 两数相加

    1.两个循环 class Solution: def twoSum(self, nums, target): n=len(nums) for i in range(n): for j in range ...