18 Candidates for the Top 10 Algorithms in Data Mining
Classification
==============
#1. C4.5
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.
Google Scholar Count in October 2006: 6907
#2. CART
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.
Google Scholar Count in October 2006: 6078
#3. K Nearest Neighbours (kNN)
Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest
Neighbor Classification. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616.
DOI= http://dx.doi.org/10.1109/34.506411
Google SCholar Count: 183
#4. Naive Bayes
Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?
Internat. Statist. Rev. 69, 385-398.
Google Scholar Count in October 2006: 51
Statistical Learning
====================
#5. SVM
Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.
Google Scholar Count in October 2006: 6441
#6. EM
McLachlan, G. and Peel, D. (2000). Finite Mixture Models.
J. Wiley, New York.
Google Scholar Count in October 2006: 848
Association Analysis
====================
#7. Apriori
Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th Int'l Conference on Very Large
Databases (VLDB '94), Santiago, Chile, September 1994.
http://citeseer.comp.nus.edu.sg/agrawal94fast.html
Google Scholar Count in October 2006: 3639
#8. FP-Tree
Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD
international Conference on Management of Data (Dallas, Texas, United
States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.
DOI= http://doi.acm.org/10.1145/342009.335372
Google Scholar Count in October 2006: 1258
Link Mining
===========
#9. PageRank
Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh international
Conference on World Wide Web (WWW-7) (Brisbane,
Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, 107-117.
DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X
Google Shcolar Count: 2558
#10. HITS
Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, California, United States, January
25 - 27, 1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 668-677.
Google Shcolar Count: 2240
Clustering
==========
#11. K-Means
MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, 1967, pp. 281-297.
Google Scholar Count in October 2006: 1579
#12. BIRCH
Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international Conference on Management of Data
(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.
SIGMOD '96. ACM Press, New York, NY, 103-114.
DOI= http://doi.acm.org/10.1145/233269.233324
Google Scholar Count in October 2006: 853
Bagging and Boosting
====================
#13. AdaBoost
Freund, Y. and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.
DOI= http://dx.doi.org/10.1006/jcss.1997.1504
Google Scholar Count in October 2006: 1576
Sequential Patterns
===================
#14. GSP
Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th international Conference on Extending Database Technology:
Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,
M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer
Science, vol. 1057. Springer-Verlag, London, 3-17.
Google Scholar Count in October 2006: 596
#15. PrefixSpan
J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and
M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings of the 17th
international Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society, Washington, DC.
Google Scholar Count in October 2006: 248
Integrated Mining
=================
#16. CBA
Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98, 1998, pp. 80-86.
http://citeseer.comp.nus.edu.sg/liu98integrating.html
Google Scholar Count in October 2006: 436
Rough Sets
==========
#17. Finding reduct
Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Norwell, MA, 1992
Google Scholar Count in October 2006: 329
Graph Mining
============
#18. gSpan
Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer
Society, Washington, DC.
Google Scholar Count in October 2006: 155
18 Candidates for the Top 10 Algorithms in Data Mining的更多相关文章
- Top 10 Algorithms for Coding Interview--reference
By X Wang Update History:Web Version latest update: 4/6/2014PDF Version latest update: 1/16/2014 The ...
- Top 10 Algorithms of 20th and 21st Century
Top 10 Algorithms of 20th and 21st Century MATH 595 (Section TTA) Fall 2014 TR 2:00 pm - 3:20 pm, Ro ...
- 转:Top 10 Algorithms for Coding Interview
The following are top 10 algorithms related concepts in coding interview. I will try to illustrate t ...
- Favorites of top 10 rules for success
Dec. 31, 2015 Stayed up to last minute of 2015, 12:00am, watching a few of videos about top 10 rules ...
- [转]Top 10 DTrace scripts for Mac OS X
org link: http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtrace-scripts-for-mac-os-x/ Top 10 DTra ...
- Top 10 Methods for Java Arrays
作者:X Wang 出处:http://www.programcreek.com/2013/09/top-10-methods-for-java-arrays/ 转载文章,转载请注明作者和出处 The ...
- Top 10 Universities for Artificial Intelligence
1. Massachusetts Institute of Technology, Cambridge, MA Massachusetts Institute of Technology is a p ...
- Top 10 Free Wireless Network hacking/monitoring tools for ethical hackers and businesses
There are lots of free tools available online to get easy access to the WiFi networks intended to he ...
- TOP 10开源的推荐系统简介
最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...
随机推荐
- sersync参数说明
-v, --verbose 详细模式输出-q, --quiet 精简输出模式-c, --checksum 打开校验开关,强制对文件传输进行校验-a, --archive 归档模式,表示以递归方式传输文 ...
- Vue 中 css scoped 样式穿透 ( stylus[>>>] / sass / less[/deep/] )
scoped看起来很好用,当时在Vue项目中,当我们引入第三方组件库时(如使用element-ui),需要在局部组件中修改第三方组件库样式,而又不想去除scoped属性造成组件之间的样式覆盖.这时我们 ...
- 使用JavaScript实现量化策略并发执行
本文代码和文章发在FMZ发明者比特币量化交易平台上: 使用JavaScript实现量化策略并发执行--封装Go函数 - 发明者量化 https://www.fmz.com/digest-topic/3 ...
- F2812 DSP程序运行在片内RAM和FLASH的区别
F2812 DSP程序运行在片内RAM和片内FLASH的区别 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:F2812是带有内部Flash的DSP,与 ...
- [转帖]hdfs hbase hive hbase适用场景
hdfs hbase hive hbase适用场景 https://www.cnblogs.com/liyulong1982/p/6001822.html Hive 不想用程序语言开发MapReduc ...
- 《Mysql 事务 - 隔离》
一:事务概念 - ACID(Atomicity.Consistency.Isolation.Durability,即原子性.一致性.隔离性.持久性) 二:事务产生的问题 - 多个事务同时执行的时候 ...
- 利用Python进行数据分析_Pandas_层次化索引
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 层次化索引主要解决低纬度形式处理高纬度数据的问题 import pandas ...
- dict字典
dict字典 字典的概述 • 概述:使⽤键-值(key-value)⽅式存储. • key的特点: • 1.字典中的key必须是唯⼀的 • 2.key值必须是不可变的数据类型:字符串.元组.Numbe ...
- Ubuntu 搭建 配置 nfs服务器
什么是NFS? NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,本地NF ...
- 【转载】在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to utilize time zone support
在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone config ...