Classification
==============

#1. C4.5

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.

Google Scholar Count in October 2006: 6907

#2. CART

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

Google Scholar Count in October 2006: 6078

#3. K Nearest Neighbours (kNN)

Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest
Neighbor Classification. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616.
DOI= http://dx.doi.org/10.1109/34.506411

Google SCholar Count: 183

#4. Naive Bayes

Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?
Internat. Statist. Rev. 69, 385-398.

Google Scholar Count in October 2006: 51

Statistical Learning
====================

#5. SVM

Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.

Google Scholar Count in October 2006: 6441

#6. EM

McLachlan, G. and Peel, D. (2000). Finite Mixture Models.
J. Wiley, New York.

Google Scholar Count in October 2006: 848

Association Analysis
====================

#7. Apriori

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th Int'l Conference on Very Large
Databases (VLDB '94), Santiago, Chile, September 1994.
http://citeseer.comp.nus.edu.sg/agrawal94fast.html

Google Scholar Count in October 2006: 3639

#8. FP-Tree

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD
international Conference on Management of Data (Dallas, Texas, United
States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.
DOI= http://doi.acm.org/10.1145/342009.335372

Google Scholar Count in October 2006: 1258

Link Mining
===========

#9. PageRank

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh international
Conference on World Wide Web (WWW-7) (Brisbane,
Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, 107-117.
DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X

Google Shcolar Count: 2558

#10. HITS

Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, California, United States, January
25 - 27, 1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 668-677.

Google Shcolar Count: 2240

Clustering
==========

#11. K-Means

MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, 1967, pp. 281-297.

Google Scholar Count in October 2006: 1579

#12. BIRCH

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international Conference on Management of Data
(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.
SIGMOD '96. ACM Press, New York, NY, 103-114.
DOI= http://doi.acm.org/10.1145/233269.233324

Google Scholar Count in October 2006: 853

Bagging and Boosting
====================

#13. AdaBoost

Freund, Y. and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.
DOI= http://dx.doi.org/10.1006/jcss.1997.1504

Google Scholar Count in October 2006: 1576

Sequential Patterns
===================

#14. GSP

Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th international Conference on Extending Database Technology:
Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,
M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer
Science, vol. 1057. Springer-Verlag, London, 3-17.

Google Scholar Count in October 2006: 596

#15. PrefixSpan

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and
M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings of the 17th
international Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society, Washington, DC.

Google Scholar Count in October 2006: 248

Integrated Mining
=================

#16. CBA

Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98, 1998, pp. 80-86.
http://citeseer.comp.nus.edu.sg/liu98integrating.html

Google Scholar Count in October 2006: 436

Rough Sets
==========

#17. Finding reduct

Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Norwell, MA, 1992

Google Scholar Count in October 2006: 329

Graph Mining
============

#18. gSpan

Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer
Society, Washington, DC.

Google Scholar Count in October 2006: 155

18 Candidates for the Top 10 Algorithms in Data Mining的更多相关文章

  1. Top 10 Algorithms for Coding Interview--reference

    By X Wang Update History:Web Version latest update: 4/6/2014PDF Version latest update: 1/16/2014 The ...

  2. Top 10 Algorithms of 20th and 21st Century

    Top 10 Algorithms of 20th and 21st Century MATH 595 (Section TTA) Fall 2014 TR 2:00 pm - 3:20 pm, Ro ...

  3. 转:Top 10 Algorithms for Coding Interview

    The following are top 10 algorithms related concepts in coding interview. I will try to illustrate t ...

  4. Favorites of top 10 rules for success

    Dec. 31, 2015 Stayed up to last minute of 2015, 12:00am, watching a few of videos about top 10 rules ...

  5. [转]Top 10 DTrace scripts for Mac OS X

    org link: http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtrace-scripts-for-mac-os-x/ Top 10 DTra ...

  6. Top 10 Methods for Java Arrays

    作者:X Wang 出处:http://www.programcreek.com/2013/09/top-10-methods-for-java-arrays/ 转载文章,转载请注明作者和出处 The ...

  7. Top 10 Universities for Artificial Intelligence

    1. Massachusetts Institute of Technology, Cambridge, MA Massachusetts Institute of Technology is a p ...

  8. Top 10 Free Wireless Network hacking/monitoring tools for ethical hackers and businesses

    There are lots of free tools available online to get easy access to the WiFi networks intended to he ...

  9. TOP 10开源的推荐系统简介

    最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...

随机推荐

  1. C#使用Castle实现AOP面向切面编程

    Castle.Core 本质是创建继承原来类的代理类,重写虚方法实现AOP功能.个人觉得比Autofac用着爽 使用方式比较简单,先新建一个控制台项目,然后在Nuget上搜索Castle.Core并安 ...

  2. mysql 查询结果为null 或 空字符串时,返回指定字符串

    直接上代码, 亲测可用: SELECT IF ( ifnull( 字段, '' ) = '', '返回的字符串', 字段) AS 别名(或者不要也可以) FROM table

  3. STL源码剖析-学习笔记

    1.模板是一个公式或是蓝图,本身不是类或是函数,需进行实例化的过程.这个过程是在编译期完成的,编译器根据传递的实参,推断出形参的类型,从而实例化相应的函数 2. 后续补充-.

  4. layuiAdmin (单页版)常见问题与解决方案

    最近项目开发中用到了layuiAdmin的单页版进行开发,期间遇到一些问题,在此总结一二: 单页版缓存问题 由于单页面版本的视图文件和静态资源模块都是动态加载的,所以可能存在浏览器的本地缓存问题,因此 ...

  5. 内网环境下搭建maven私服小技巧

    背景 最近接手一个其他公司的项目,因为工程中使用了maven,而且里面有很多他们自己封装很多自己的构件(就是jar.war等等),需要将他们maven私服迁移到我们的私服上去,因为网络环境不通,所以不 ...

  6. SQL入门经典(第四版)学习记录——SQL语法(二)

    一.创建表 create table 表里包含什么类型的数据 表的名称是什么 主键 列的名称是什么 每一列的数据类型是什么 每一列的长度是多少 表里哪些列可以是空的 语法: create table ...

  7. oracle多表关联查询和子查询

    oracle多表关联查询和子查询 一.多表关联查询 例子: SQL> create table student1 ( sid ), sname ), sage )); Table created ...

  8. oracle调用函数的方式

    --方法1.PLSQL代码块 SQL> set serveroutput onSQL> declare 2 v_sal emp_pl.sal%type; 3 begin 4 v_sal : ...

  9. javaIO -- 流的体系设计思路、基础分类

    一.流 1. 流的含义 在程序设计中,流是对于数据流动传输的一种抽象描述任何有能力产出数据的数据源,或者有能力接受数据的接收端对象都是一个流. 2. 流的源和目的 数据可能从本地文件读取,或者写入,  ...

  10. Dining(POJ-3281)【最大流】

    题目链接:https://vjudge.net/problem/POJ-3281 题意:厨师做了F种菜各一份,D种饮料各一份,另有N头奶牛,每只奶牛只吃特定的菜和饮料,问该厨师最多能满足多少头奶牛? ...