BZOJ 4017 小 Q 的无敌异或 ( 树状数组、区间异或和、区间异或和之和、按位计贡献思想 )
题意 : 中文题
分析 :
首先引入两篇写的很好的题解
听说这种和异或相关区间求和的问题都尽量按位考虑
首先第一问、按二进制位计贡献的话、那么对于第 k 位而言
其贡献 = 区间异或和第 k 位为 1 的子区间个数 * 2^k
而能产生贡献的子区间必定满足 xorSum(R) ^ xorSum(L-1) 第 k 位为 1
注 : xorSum 为前缀异或和
要快速计算这个东西其实很简单、先计算出 xorSum
然后枚举右端点 R 、累计到目前为止每个位的 0 和 1 的数量
就能做到 O(1) 转移
假设 xorSum(R) 的第 k 位为 0
那么其贡献就应该为前面所有累计的 1 的数量 * 2^k
第二问就稍许复杂了些、但大体思路也是使用按位计贡献的思路
如果一个区间的所有子区间之和的第 k 位为 1 的话、那么所有子区间的和
在第 k 位上为 1 的子区间个数应当为奇数
也就是说 PreSum(R) - PreSum(L-1) 第 k 位为 1、这样子的二元组 (L、R) 有奇数个
注 : PreSum(i) 为前缀和
“PreSum(R) - PreSum(L-1) 第 k 位为 1”
这句话可以用一个不等式来表示
( PreSum(R) - PreSum(L-1) ) mod (2^(k+1)) ≥ 2^k
( 假设最后一位为第 0 位、即 k 从 0 开始算 )
原理可以这样子思考、你想你在十进制下截取一个数的后 k 位用什么办法?
是不是直接 mod 10^(k+1) ( 假设最后一位为第 0 位 )
二进制下也是一样的道理
不过模数涉及到减法就可能产生负数、需要对结果另加模数
那么对上述式子进行变形、有两种满足条件


可以发现如果枚举右端点的话、那么就是统计满足条件的 PreSum(L-1) mod 2^(k+1) 的个数了
那么由于是不等关系、那么可以先离散化所有的 PreSum(L-1) mod 2^(k+1) 值
存进去树状数组中便可轻易统计数量
不过与其算出数量再来判断奇偶、官方题解给出了更为巧妙的实现方法
也是用到了异或的性质、把树状数组存的值变成前缀异或和
那么如果查询的异或和是 1 那么说明是奇数、否则是偶数、可以看程序去体会一下
有一点要注意、就是离散的值都是 PreSum[i] mod 2^(k+1)
所以在二分查找的时候、可能不会在离散化后的数组里面找到相对应的值
那么要将它的贡献放入树状数组当中的话就要二分查找出一个 ≤ 它的位置、然后去异或 1
#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)
#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))
#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>
#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;
;
;
int n;
int ans1;
int xorSum[maxn];
int c[maxn];
int arr[maxn];
LL id[maxn];
LL PreSum[maxn];
LL ans2;
LL one[maxn][];
LL zero[maxn][];
inline void BitAdd(int i)
{
){
c[i] ^= ;
i += lowbit(i);
}
}
int BitSum(int i)
{
) ;
;
){
ret ^= c[i];
i -= lowbit(i);
}return ret;
}
int idx(LL key)
{
, R = n;
;///过滤掉负数的情况、key<0 <=> ret+1 = 0
///在树状数组里面不产生贡献
while(L <= R){
;
;
;
};
}
int main(void){__stTIME();__IOPUT();
sci(n);
; i<=n; i++){
sci(arr[i]);
xorSum[i] = xorSum[i-] ^ arr[i];
PreSum[i] = PreSum[i-] + arr[i];
}
; i<; i++) zero[][i] = 1LL;
; i<=n; i++){
; j<; j++){
one[i][j] = one[i-][j];
zero[i][j] = zero[i-][j];
if((xorSum[i] & (1LL<<j))){
one[i][j]++;
ans1 += zero[i-][j] * 1LL * (1LL<<j) % mod;
if(ans1 >= mod) ans1 -= mod;
}else{
zero[i][j]++;
ans1 += one[i-][j] * 1LL * (1LL<<j) % mod;
if(ans1 >= mod) ans1 -= mod;
}
}
}
; (1LL<<j)<=PreSum[n]; j++){
;
; i<=n; i++)
id[i] = PreSum[i] & ((1LL << j + ) - );
sort(id, id+n+);
mem(c, );
; i<=n; i++){
LL cur = PreSum[i] & ((1LL<< j + ) - );
BitAdd(idx(cur));
res ^= BitSum(idx(cur - (1LL<<j))) ^
BitSum(idx(cur + (1LL<<j))) ^
BitSum(idx(cur));
}
if(res) ans2 |= 1LL << j;
}
printf("%d %lld\n", ans1, ans2);
__enTIME();;}
void __stTIME()
{
#if _TIME
START = clock();
#endif
}
void __enTIME()
{
#if _TIME
END = clock();
cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
#endif
}
void __IOPUT()
{
#if _INPUT
freopen("in.txt", "r", stdin);
#endif
#if _OUTPUT
freopen("out.txt", "w", stdout);
#endif
}
BZOJ 4017 小 Q 的无敌异或 ( 树状数组、区间异或和、区间异或和之和、按位计贡献思想 )的更多相关文章
- bzoj 4017: 小Q的无敌异或
4017: 小Q的无敌异或 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 593 Solved: 197[Submit][Status][Discu ...
- BZOJ 3744: Gty的妹子序列 【分块 + 树状数组 + 主席树】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3744 3744: Gty的妹子序列 Time Limit: 20 Sec Memory ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- BZOJ.2738.矩阵乘法(整体二分 二维树状数组)
题目链接 BZOJ 洛谷 整体二分.把求序列第K小的树状数组改成二维树状数组就行了. 初始答案区间有点大,离散化一下. 因为这题是一开始给点,之后询问,so可以先处理该区间值在l~mid的修改,再处理 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- BZOJ 2738 子矩阵第k大 | 二维树状数组 整体二分 分治
BZOJ 2738 "矩阵乘法"(子矩阵第k大) 题意 给出一个矩阵,多次询问子矩阵中第k大的数是多少. 题解 我做这道题之前先照着这道题出了一道题,是这道题的一维版本,在这里:h ...
- Bzoj4548 小奇的糖果(链表+树状数组)
题面 Bzoj 题解 很显然,我们只需要考虑单独取线段上方的情况,对于下方的把坐标取反再做一遍即可(因为我们只关心最终的答案) 建立树状数组维护一个横坐标区间内有多少个点,维护双向链表实现查询一个点左 ...
- bzoj 4372 烁烁的游戏——动态点分治+树状数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4372 和 bzoj 3070 震波 是一个套路.注意区间修改的话,树状数组不能表示 dis ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
随机推荐
- nasm 使用总结
1,编译 nasm -f bin myfile.asm -o myfile 生成目标文件 nasm -f bin myfile.asm -l myfile 生成清单文件 2,快速开始 nasm是 ...
- 【AC自动机】病毒
[题目链接] https://loj.ac/problem/10062 [题意] 寻找一个没有模式串为子串的无限01串.是否存在. [题解] 其实就是用dfs找一个环. 1.环需要从根结点出发找到这个 ...
- php 处理数字为金钱格式
number_format(需要转换的数字,保留小数个数,小数点符号,每三位的分隔符) echo number_format("1000000")."<br> ...
- ORM框架之EntityFramework介绍
ORM框架之EntityFramework介绍 1. 简介 大家好!我是高堂. 作为一位伪前端程序猿,我给大家介绍一下微软的自家的 ORM框架. ADO.NET Entity Framework 以下 ...
- element-ui表格带复选框使用方法及默认选中方法
一.实现多选:步骤1:在表格中添加一列 步骤2:在data中定义以及数组用来存储选中的元素.例如:multipleSelection:[] selection-change方法用户实时监听选中元素 实 ...
- Oracle面试题及答案整理
一下题目根据此表变换 1.表:table1(FId,Fclass,Fscore),用最高效最简单的SQL列出各班成绩最高的列表,显示班级,成绩两个字段. select stu_class, max(s ...
- web应用原理之——会话
会话是大家开发Java EE Web应用的常用技术,那么会话是什么,会话的用途还有工作原理又是什么,下面就简单说一说. 什么是会话,在web应用中,作为客户端的浏览器,通过请求/响应这种模式访问同一个 ...
- Objective-C语法总结收集
PART1--详解Objective-C语法快速参考 一.XCode.Objective-C.Cocoa说的是几样东西? 答案:三样东西. XCode:你可以把它看成是一个开发环境,就好像Visual ...
- 实用:Java基础流计算
java的流不常用,每次学习完都懂,过了一段时间就全忘了... 记录下一点实用的东西... 需求: 截取文件的前250kb内容 public static void main(String[] arg ...
- 牛客练习赛53 A 超越学姐爱字符串 (DP)
牛客练习赛53 超越学姐爱字符串 链接:https://ac.nowcoder.com/acm/contest/1114/A来源:牛客网 超越学姐非常喜欢自己的名字,以至于英文字母她只喜欢" ...