/*
HDU 6051 - If the starlight never fade [ 原根,欧拉函数 ] | 2017 Multi-University Training Contest 2
题意:
给定 m,p, p 是素数
设 f(i) 是 满足 (x+y)^i ≡ x^i mod p 的 (x,y) 对数 且 1 ≤ x ≤ p-1 , 1 ≤ y ≤ m
求 ∑[1≤i≤p-1] i*f(i)
限制: m ≤ p-1, 2 ≤ p ≤ 1e9
分析:
设 g 为 p 的原根,则x,y可表示为 x = g^a, y = g^b
(x+y)^i ≡ x^i (mod p)
(g^a + g^b)^i ≡ g^ai (mod p)
(1 + g^(b-a))^i ≡ 1 (mod p)
设 g^k = 1 + g^(b-a),则 g^ki ≡ 1 (mod p)
则 k 满足 ki % (p-1) == 0 ,即 k 是 (p-1)/gcd(i, p-1) 的倍数
由于 0 < k < p-1 , 则k的取值有 (p-1) / ((p-1)/gcd(i, p-1)) - 1 = gcd(i, p-1)-1 个
回带 1 + y/x = g^k
x = y * (g^k-1)^(-1)
x = y * (g^k-1)^(φ(p)-1)
则 当y固定时, x, k 一一对应,x的取值也有 gcd(i, p-1)-1 个 ans = ∑[1≤i≤p-1] i*f(i)
= ∑[1≤i≤p-1] i * m * (gcd(i, p-1)-1)
= m * ( ∑[1≤i≤p-1] i * gcd(i, p-1) - p*(p-1)/2) 求解 ∑[1≤i≤n] i * gcd(i, n)
= ∑[1≤i≤n] i ∑[k|n] k * [gcd(i, n) == k]
= ∑[k|n] ∑[1≤i≤n] i * k * [gcd(i, n) == k]
= ∑[k|n] k^2 ∑[1≤i≤n/k] i * [gcd(i, n/k) == 1] 求解 ∑[1≤i≤n] i * [gcd(i, n) == 1]
= (∑[1≤i≤n] i * [gcd(i, n) == 1] + ∑[1≤i≤n] (n-i) * [gcd(i, n-i) == 1]) / 2
= ∑[1≤i≤n] (i+n-i)/2 * [gcd(i, n) == 1]
= (n * φ(n) + [n==1]) / 2
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MOD = 1e9+7;
LL phi(LL n) {
LL ans = n;
for (LL i = 2; i * i <= n; i++) {
if (n % i == 0) {
ans -= ans / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) ans -= ans/n;
return ans;
}
LL Cal(LL x, LL n)
{
LL res = 1;
res *= ( (n/x)*phi(n/x) + bool(n/x == 1) ) / 2;
res %= MOD;
res *= x*x % MOD;
res %= MOD;
return res;
}
LL p, m;
int main()
{
int t; scanf("%d", &t);
for (int tt = 1; tt <= t; tt++)
{
scanf("%lld%lld", &m, &p);
LL ans = 0;
for (LL i = 1; i*i <= p-1; i++)
{
if (i*i == p-1)
{
ans += Cal(i, p-1);
ans %= MOD;
}
else if ((p-1)%i == 0)
{
ans += Cal(i, p-1) + Cal((p-1)/i, p-1);
ans %= MOD;
}
}
ans += MOD - p*(p-1)/2 % MOD;
ans = ans % MOD * m % MOD;
printf("Case #%d: %lld\n", tt, ans);
}
}

  

HDU 6051 - If the starlight never fade | 2017 Multi-University Training Contest 2的更多相关文章

  1. HDU 6051 If the starlight never fade(原根+推式子)

    题目大意: 设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数.其中\(1 \leq x \leq p-1 , 1\leq y\leq m\), ...

  2. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

  3. hdu 5335 Walk Out(bfs+斜行递推) 2015 Multi-University Training Contest 4

    题意—— 一个n*m的地图,从左上角走到右下角. 这个地图是一个01串,要求我们行走的路径形成的01串最小. 注意,串中最左端的0全部可以忽略,除非是一个0串,此时输出0. 例: 3 3 001 11 ...

  4. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

  5. 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟

    /** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...

  6. 2017 Wuhan University Programming Contest (Online Round) B Color 树形dp求染色方法数

    /** 题目:Color 链接:https://oj.ejq.me/problem/23 题意:给定一颗树,将树上的点最多染成m种颜色,有些节点不可以染成某些颜色.相邻节点颜色不同.求染色方法数. 思 ...

  7. HDU 6300.Triangle Partition-三角形-水题 (2018 Multi-University Training Contest 1 1003)

    6300.Triangle Partition 这个题就是输出组成三角形的点的下标. 因为任意三点不共线,所以任意三点就可以组成三角形,直接排个序然后输出就可以了. 讲道理,没看懂官方题解说的啥... ...

  8. 2017 Wuhan University Programming Contest (Online Round) D. Events,线段树区间更新+最值查询!

    D. Events 线段树区间更新查询区间历史最小值,看似很简单的题意写了两天才写出来. 题意:n个数,Q次操作,每次操作对一个区间[l,r]的数同时加上C,然后输出这段区间的历史最小值. 思路:在线 ...

  9. 2015多校联合训练赛 hdu 5308 I Wanna Become A 24-Point Master 2015 Multi-University Training Contest 2 构造题

    I Wanna Become A 24-Point Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 ...

随机推荐

  1. 12-MySQL DBA笔记-MySQL复制

    第12章 MySQL复制 本章将为读者讲述MySQL的复制技术,首先,介绍最基础的主从复制,它是其他所有复制技术的基础,接着再为读者讲述各种复制架构的搭建,最后,列举了一些常见的复制问题及处理方式.复 ...

  2. springboot application.properties配置大全

    springboot application.properties配置大全 官方文档 https://docs.spring.io/spring-boot/docs/current/reference ...

  3. SQLException: #22001你知道这个错误码吗

    做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! java.sql.SQLException: #22001 java.sql.SQLException: #22001 a ...

  4. 获取windows进程信息及CListCtrl控件(List Control)练习

    环境:VS2010/MFC/对话框 效果图: 目录: 1.  关于windows进程信息获取 2.  CListCtrl的使用 ------------------------------------ ...

  5. C++遍历文件夹

    struct _finddata_t { unsigned attrib; //文件属性 time_t time_create; //文件创建时间 time_t time_access; //文件上一 ...

  6. Pytorch中的自编码(autoencoder)

    Pytorch中的自编码(autoencoder) 本文资料来源:https://www.bilibili.com/video/av15997678/?p=25 什么是自编码 先压缩原数据.提取出最有 ...

  7. Linux常用命令(自用)

    1 抓包 tcpdump port 5060 and host 192.168.1.180 tcpdump -i ethx -w 1.pcap -s 0 2. 查看硬盘使用情况 df ./ 3.查看进 ...

  8. @ComponentScan注解及其XML配置

    开发中会经常使用包扫描,只要标注了@Controller.@Service.@Repository,@Component 注解的类会自动加入到容器中,ComponentScan有注解和xml配置两种方 ...

  9. 第三章 Lambda表达式

    第三章 Lambda表达式 3.1 函数式编程思想概述 在数学中,函数就是有输入量.输出量的一套计算方案,也就是“拿什么东西做什么事情”.相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函 ...

  10. Golang之初探

    什么是Go语言 Go语言介绍 产生背景: 超级复杂的C++11特性的吹捧报告的鄙视以及最终的目标是具备动态语言的开发速度的同时并要有C/C++编译语言的性能与安全性以及设计网络和多核时代的C语言 Go ...