今天又考试了...... 这是T2。

Analysis

考试时想了一个判断质因数个数+打表的神奇方法,但没在每次输入n,m时把ans置0,50分滚粗。

看了题解才发现原来是杨辉三角+二维前缀和,果然还是我太菜了。

注意在求前缀和的时候如果这个数是0且在杨辉三角中,说明它被k求余成了0,就要把它+1。

时间复杂度O(n²)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 2000
using namespace std;
typedef long long ll;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
ll T,k,n,m;
ll map[maxn+][maxn+],ans[maxn+][maxn+];
int main()
{
T=read();k=read();
for(int i=;i<=maxn;i++)
{
map[i][i]=;
map[i][]=;
}
for(int i=;i<=maxn;i++)
for(int j=;j<i;j++)
map[i][j]=(map[i-][j-]+map[i-][j])%k;
for(int i=;i<=maxn;i++)
for(int j=;j<=maxn;j++)
{
ans[i][j]=ans[i-][j]+ans[i][j-]-ans[i-][j-];
if(map[i][j]==&&j<=i)ans[i][j]++;
}
while(T--)
{
n=read();m=read();
write(ans[n][m]);
printf("\n");
}
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)

洛谷 P2822 组合数问题 题解的更多相关文章

  1. 洛谷P2822 组合数问题(题解)

    https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...

  2. 洛谷P2822组合数问题

    传送门啦 15分暴力,但看题解说暴力分有30分. 就是找到公式,然后套公式.. #include <iostream> #include <cstdio> #include & ...

  3. 洛谷 P2822 组合数问题

    题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...

  4. 洛谷P2822 组合数问题

    输入输出样例 输入样例#1: 1 2 3 3 输出样例#1: 1 输入样例#2: 2 5 4 5 6 7 输出样例#2: 0 7 说明 [样例1说明] 在所有可能的情况中,只有C_2^1 = 2C21 ...

  5. 洛谷——P2822 组合数问题

    https://www.luogu.org/problem/show?pid=2822 题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三 ...

  6. 【洛谷P2822 组合数问题】

    题目连接 #include<iostream> #include<cstring> #include<cstdio> #include<cctype> ...

  7. 洛谷P2822 组合数问题 杨辉三角

    没想到这道题竟然这么水- 我们发现m,n都非常小,完全可以O(nm)O(nm)O(nm)预处理出stripe数组,即代表(i,j)(i,j)(i,j) 及其向上的一列的个数,然后进行递推即可. #in ...

  8. 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)

    洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...

  9. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

随机推荐

  1. Python-05-字符串格式化

    一.百分号方式 %[(name)][flags][width].[precision]typecode (name)      可选,用于选择指定的key flags          可选,可供选择 ...

  2. CSS样式三种形式222

    markdown CSS基本表现形式只有三种:标签样式.Class类样式.ID样式 标签样式: 必须与HTML标签同名.仅仅影响同名标签 Class样式:可以在任何标签中使用: class=" ...

  3. golang使用一个二叉树来实现一个插入排序

    思路不太好理解,请用断点 package main import "fmt" type tree struct { value int left, right *tree } fu ...

  4. 11 模块、模块的搜索顺序、__file__内置属性、__name__属性

    模块的概念 一个python文件就是一个模块. 模块名同时也是一个标识符,需要符合标识符的命名规则. 在模块中定义的全局变量.函数.类 都是个外界提供的直接使用的工具. 模块就好比工具包,要想使用一个 ...

  5. html页面在苹果手机内,safari浏览器,微信中滑动不流畅问题解决方案

    1. -webkit-overflow-scrolling:touch是什么? MDN上是这样定义的: -webkit-overflow-scrolling 属性控制元素在移动设备上是否使用滚动回弹效 ...

  6. 还想免费继续使用JDK吗?从java11以后别从Oracle下载了

    Java生态系统一直以来是建立在一个高质量的免费(零成本)JDK之上的,它可以从甲骨文(Oracle)和以前的Sun获得. 今天的情况和以前一样. Java现在每六个月发布一次版本,这个版本是指提供带 ...

  7. py-1 语言介绍

    一.编程与编程语言 1.编程的目的 计算机的发明,是为了用机器取代并解放人力.而编程的目的则是将人类的思想流程按照某种能够被计算机识别的表达方式传递给计算机,从而达到让计算机能够像人脑.电脑一样自动执 ...

  8. Linux软件包(源码包和二进制包)及其区别和特点

    Linux 下的软件包众多,而且几乎都是经 GPL 授权的,也就是说这些软件都免费,振奋人心吧?而且更棒的是,这些软件几乎都提供源代码(开源的),只要你愿意,就可以修改程序源代码,以符合个人的需求和习 ...

  9. DB2备份恢复schema

    场景:日常中开发同步生成环境或者环境切换都需要进行表结构.存储.数据等等的迁移,本文为表.视图.包.函数.存储等统一备份及恢复的操作. 备份: 登录数据库所在服务器,或者可远程连接需备份数据库的服务器 ...

  10. Android笔记(十八) 下拉列表(Spinner)

    App中常用的控件——下拉列表(Spinner),提供特定选择供用户选择 Spinner每次只能选择一个部件,它的选项来自于与之相关联的适配器(apater)中. MainActivity.java ...