转载自:https://yq.aliyun.com/articles/7593

函数作用:

gp_dist_random('gp_id')本质上就是在所有节点查询gp_id,
gp_dist_random('pg_authid')就是在所有节点查询pg_authid,

使用greenplum时,如果需要调用一个函数,这个函数很可能就在master执行,而不会跑到segment上去执行。
例如 random()函数。
通过select random()来调用的话,不需要将这条SQL发送到segment节点,所以执行计划如下,没有gather motion的过程。

postgres=# explain analyze select random();
QUERY PLAN
----------------------------------------------------------------------------------------
Result (cost=0.01..0.02 rows=1 width=0)
Rows out: 1 rows with 0.017 ms to end, start offset by 0.056 ms.
InitPlan
-> Result (cost=0.00..0.01 rows=1 width=0)
Rows out: 1 rows with 0.004 ms to end of 2 scans, start offset by 0.059 ms.
Slice statistics:
(slice0) Executor memory: 29K bytes.
(slice1) Executor memory: 29K bytes.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 0.074 ms
(11 rows)

如果要让这个函数在segment执行,怎么办呢?
通过gp_dist_random('gp_id')来调用,gp_dist_random的参数是一个可查询的视图,或表。

postgres=# explain analyze select random() from gp_dist_random('gp_id');
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 240:1 (slice1; segments: 240) (cost=0.00..4.00 rows=240 width=0)
Rows out: 240 rows at destination with 6.336 ms to first row, 59 ms to end, start offset by 4195 ms.
-> Seq Scan on gp_id (cost=0.00..4.00 rows=1 width=0)
Rows out: Avg 1.0 rows x 240 workers. Max 1 rows (seg0) with 0.073 ms to first row, 0.075 ms to end, start offset by 4207 ms.
Slice statistics:
(slice0) Executor memory: 471K bytes.
(slice1) Executor memory: 163K bytes avg x 240 workers, 163K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Total runtime: 4279.445 ms
(10 rows)

gp_id在每个segment中都有一条记录,所以以上SQL会在每个SEGMENT中调用一次random()并返回所有结果,例如我的测试环境中有240个segment, 那么以上SQL将返回240条记录。

在gp_id的定义中,介绍了gp_dist_random用它可以做一些管理的工作:
譬如查询数据库的大小,查询表的大小,其实都是这样统计的。
src/backend/catalog/postgres_bki_srcs

/*-------------------------------------------------------------------------
*
* gp_id.h
* definition of the system "database identifier" relation (gp_dbid)
* along with the relation's initial contents.
*
* Copyright (c) 2009-2010, Greenplum inc
*
* NOTES
* Historically this table was used to supply every segment with its
* identification information. However in the 4.0 release when the file
* replication feature was added it could no longer serve this purpose
* because it became a requirement for all tables to have the same physical
* contents on both the primary and mirror segments. To resolve this the
* information is now passed to each segment on startup based on the
* gp_segment_configuration (stored on the master only), and each segment
* has a file in its datadirectory (gp_dbid) that uniquely identifies the
* segment.
*
* The contents of the table are now irrelevant, with the exception that
* several tools began relying on this table for use as a method of remote
* function invocation via gp_dist_random('gp_id') due to the fact that this
* table was guaranteed of having exactly one row on every segment. The
* contents of the row have no defined meaning, but this property is still
* relied upon.
*/
#ifndef _GP_ID_H_
#define _GP_ID_H_ #include "catalog/genbki.h"
/*
* Defines for gp_id table
*/
#define GpIdRelationName "gp_id" /* TIDYCAT_BEGINFAKEDEF CREATE TABLE gp_id
with (shared=true, oid=false, relid=5001, content=SEGMENT_LOCAL)
(
gpname name ,
numsegments smallint ,
dbid smallint ,
content smallint
); TIDYCAT_ENDFAKEDEF
*/

查询数据库大小的GP函数

postgres=# \df+ pg_database_size
List of functions
Schema | Name | Result data type | Argument data types | Type | Data access | Volatility | Owner | Language | Source code | Description
------------+------------------+------------------+---------------------+--------+----------------+------------+----------+----------+-----------------------+-------------------------------------------------------------
pg_catalog | pg_database_size | bigint | name | normal | reads sql data | volatile | dege.zzz | internal | pg_database_size_name | Calculate total disk space usage for the specified database
pg_catalog | pg_database_size | bigint | oid | normal | reads sql data | volatile | dege.zzz | internal | pg_database_size_oid | Calculate total disk space usage for the specified database
(2 rows)

其中pg_database_size_name 的源码如下:
很明显,在统计数据库大小时也用到了select sum(pg_database_size('%s'))::int8 from gp_dist_random('gp_id');

Datum
pg_database_size_name(PG_FUNCTION_ARGS)
{
int64 size = 0;
Name dbName = PG_GETARG_NAME(0);
Oid dbOid = get_database_oid(NameStr(*dbName)); if (!OidIsValid(dbOid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_DATABASE),
errmsg("database \"%s\" does not exist",
NameStr(*dbName)))); size = calculate_database_size(dbOid); if (Gp_role == GP_ROLE_DISPATCH)
{
StringInfoData buffer; initStringInfo(&buffer); appendStringInfo(&buffer, "select sum(pg_database_size('%s'))::int8 from gp_dist_random('gp_id');", NameStr(*dbName)); size += get_size_from_segDBs(buffer.data);
} PG_RETURN_INT64(size);
}

不信我们可以直接查询这个SQL,和使用pg_database_size函数得到的结果几乎是一样的,只差了calculate_database_size的部分。

postgres=# select sum(pg_database_size('postgres'))::int8 from gp_dist_random('gp_id');
sum
----------------
16006753522624
(1 row) postgres=# select pg_database_size('postgres');
pg_database_size
------------------
16006763924106
(1 row)

gp_dist_random('gp_id')本质上就是在所有节点查询gp_id,
gp_dist_random('pg_authid')就是在所有节点查询pg_authid,
例如:

postgres=# select * from gp_dist_random('gp_id');
gpname | numsegments | dbid | content
-----------+-------------+------+---------
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
Greenplum | -1 | -1 | -1
。。。。。。

如果不想返回太多记录,可以使用limit 来过滤,但是执行还是会在所有的segment都执行,如下:

postgres=# explain analyze select random() from gp_dist_random('gp_id') limit 1;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.04 rows=1 width=0)
Rows out: 1 rows with 5.865 ms to first row, 5.884 ms to end, start offset by 4212 ms.
-> Gather Motion 240:1 (slice1; segments: 240) (cost=0.00..0.04 rows=1 width=0)
Rows out: 1 rows at destination with 5.857 ms to end, start offset by 4212 ms.
-> Limit (cost=0.00..0.02 rows=1 width=0)
Rows out: Avg 1.0 rows x 240 workers. Max 1 rows (seg0) with 0.062 ms to first row, 0.063 ms to end, start offset by 4228 ms.
-> Seq Scan on gp_id (cost=0.00..4.00 rows=1 width=0)
Rows out: Avg 1.0 rows x 240 workers. Max 1 rows (seg0) with 0.060 ms to end, start offset by 4228 ms.
Slice statistics:
(slice0) Executor memory: 463K bytes.
(slice1) Executor memory: 163K bytes avg x 240 workers, 163K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Total runtime: 4288.007 ms
(14 rows)

Greenplum 函数 gp_dist_random的更多相关文章

  1. PostgreSQL、Greenplum 日常监控 和 维护任务

    背景 Greenplum的日常监控点.评判标准,日常维护任务. 展示图层 由于一台主机可能跑多个实例,建议分层展示. 另外,即使是ON ECS虚拟机(一个虚拟机一个实例一对一的形态)的产品形态,实际上 ...

  2. PostgreSQL和Greenplum、Npgsql

    PostgreSQL和Greenplum.Npgsql 想着要不要写,两个原因“懒”和“空”.其实懒和空也是有联系的,不是因为懒的写,而是因为对PostgreSQL和Npgsql的知识了解匮乏,也就懒 ...

  3. greenplum和postgresql

    想着要不要写,两个原因"懒"和"空".其实懒和空也是有联系的,不是因为懒的写,而是因为对PostgreSQL和Npgsql的知识了解匮乏,也就懒得写.好了,开头 ...

  4. Greenplum入门——基础知识、安装、常用函数

    Greenplum入门——基础知识.安装.常用函数 2017年10月08日 22:03:09 在咖啡里溺水的鱼 阅读数:8709    版权声明:本文为博主原创,允许非商业性质转载但请注明原作者和出处 ...

  5. greenplum中to_date函数注意点

    今天协助排查异常数据,发现是如下类似代码产生的: to_date(col_name,'yyyymmdd'),其中col_name是date类型. 这个代码运行后,结果是:2018-11-16的date ...

  6. GreenPlum学习笔记:create or replace function创建函数

    原始表数据如下: 需求:现要求按分号“;”将rate_item列进行分割后插入到新的数据表中. CREATE OR REPLACE FUNCTION fun_gp_test_xxx_20181026( ...

  7. Greenplum(PostgreSql)中函数内游标的使用实例

    直接上代码,具体整体函数定义就不上了,只写关键部分: --定义两个变量 DECLARE CCUR REFCURSOR; -- 游标变量 RECORD1 RECORD; -- 记录变量,用来存储游标遍历 ...

  8. Greenplum(PostgreSql)函数实现批量删除表

    项目做库迁移,前期需要经常调整表结构语句,涉及多次的批量drop,本着偷懒精神写了这个函数.鉴于本函数在生产环境有巨大风险,建议测试完毕后立即删除. 主要步骤很简单:1)从pg_tables查询得到相 ...

  9. Postgresql/Greenplum中将数字转换为字符串TO_CHAR函数前面会多出一个空格

    -- 问题1..Postgresql中将数字转换为字符串前面多出一个空格. SELECT TO_CHAR(, '); -- 解决1.使用如下,参数二前面加上fm就可以去掉空格了,如下: SELECT ...

随机推荐

  1. django使用pyecharts(1)----django加入echarts

    Django 中使用 pyecharts.一.普通django加入echarts Django 模板渲染 Step 0: 新建一个 Django 项目 $ django-admin startproj ...

  2. EAFP vs LBYL

    EAFP vs LBYL 检查数据可以让程序更健壮,用术语来说就是防御性编程.检查数据的时候,有EAFP和LBYL两种不同的编程风格,具体的意思如下: LBYL: Look Before You Le ...

  3. Java基础IO类之字节数组流

    package IODemo; //字节数组流 :内部维护这着一个字节数组,我们可以利用流的读取机制来处理字符串 无需关闭,不会报IO异常 // ByteArrayInputstream ByteAr ...

  4. sql For xml path('') 备忘

    sql 合并行使用的两个函数记录: SELECT CityName,STUFF((SELECT ',' + UserName FROM table1 subTitle WHERE CityName=A ...

  5. selenium2自动化测试实战--基于Python语言

    自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 ...

  6. 在Windows上安装Redis

    微软官网源码 https://github.com/MicrosoftArchive/redis 这里介绍安装Signed binaries版本 使用Chocolatey(Windows包管理工具)安 ...

  7. J.U.C之AQS:CLH同步队列

    此篇博客所有源码均来自JDK 1.8 在上篇博客[死磕Java并发]—–J.U.C之AQS:AQS简介中提到了AQS内部维护着一个FIFO队列,该队列就是CLH同步队列. CLH同步队列是一个FIFO ...

  8. 如何给SAP云平台的账号分配Leonardo机器学习服务的实例

    首先点击Entitlements下面的Service Assignments,查看是否有SAP Leonardo Machine Learning Foundation这个服务: 点击SubAccou ...

  9. js调用正则表达式

    //验证是否为正整数 function isPositiveInteger(s) { var re = /^[0-9]+$/; return re.test(s); } if (exchangeCou ...

  10. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...