hive优化,并行查询
1、hive中控制并行执行的参数有如下几个:
$ bin/hive -e set | grep parall
hive.exec.parallel=false
hive.exec.parallel.thread.number=8
hive.stats.map.parallelism=1
其中:hive.exec.parallel=false、hive.exec.parallel.thread.number=8分别控制着hive并行执行的特性。hive.exec.parallel=false表示默认没有启用并行参数,可以将其设置为true,在执行作业前进行session级别设置;hive.exec.parallel.thread.number=8表示每个SQL执行并行的线程最大值,默认是8.
例如:
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
select deptno,count(1) from emp group by deptno
union all
select deptno ,count(1) from emp group by deptno;
上面这个SQL的执行既可以启动并行,既可以同时执行不相关任务,而不需要一步一步顺序执行。
2、注意点:在hadoop上自行mapreduce任务数是有限制的,针对于集群资源充足的情况,并行自行可以很大程度提高性能,但如果集群资源本身就很紧张,那么并行并不能启动有效效果。
一个可能的hive作业设置为:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
set hive.exec.reducers.bytes.per.reducer=1000000000;
set hive.exec.reducers.max=256;
set hive.merge.mapfiles=true;
set hive.merge.mapredfiles =ture;
set hive.merge.size.per.task=256000000;
set hive.merge.smallfiles.avgsize=16000000;
set hive.exec.compress.intermediate=true;
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;
set hive.exec.compress.output=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
select deptno,count(1) from emp group by deptno
union all
select deptno ,count(1) from emp group by deptno;
hive优化,并行查询的更多相关文章
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- Hive和并行数据仓库的比较
最近分析和比较了Hive和并行数据仓库的架构,本文记下一些体会. Hive是架构在Hadoop MapReduce Framework之上的开源数据分析系统. Hive具有如下特点: 1. 数据以HD ...
- 【转】Hive优化总结
优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解Hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoo ...
- hive学习(八)hive优化
Hive 优化 1.核心思想: 把Hive SQL 当做Mapreduce程序去优化 以下SQL不会转为Mapreduce来执行 select仅查询本表字段 where仅对本表字段做条件过滤 Ex ...
- Hive优化(整理版)
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...
- Hive优化(十一)
Hive优化 Hive的存储层依托于HDFS,Hive的计算层依托于MapReduce,一般Hive的执行效率主要取决于SQL语句的执行效率,因此,Hive的优化的核心思想是MapReduce的优 ...
- (hive)hive优化(转载)
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...
- HIVE优化学习笔记
概述 之前写过关于hive的已经有两篇随笔了,但是作者依然还是一枚小白,现在把那些杂七杂八的总结一下,供以后查阅和总结.今天的文章介绍一下hive的优化.hive是好多公司都在使用的东西,也有好多大公 ...
- Hive优化(面试宝典)(详细的九个优化)
Hive优化(面试宝典) 1.1 hive的随机抓取策略 理论上来说,Hive中的所有sql都需要进行mapreduce,但是hive的抓取策略帮我们 省略掉了这个过程,把切片split的过程提前帮我 ...
随机推荐
- SQL语言(二)
SQL约束与策略 create table student( id int primary key, //主键约束 name ) not null, //非空约束 idCard ) unique, / ...
- mdk编译时的内存分析
内存四区(代码区,全局区,栈区,堆区) Code:即代码域,它指的是编译器生成的机器指令,这些内容被存储到ROM区. RO-data:Read Only data,即只读数据域,它指程序中用到的只读数 ...
- truncate删除一个分区,测试全局索引是否失效
目的,有一个清理数据的需求,需要删除历史的一个分区所有记录信息,但是存在主键global索引,如何更好的维护. 如下测试流程一 提前创建好一个已时间created 字段作为分区键的范围分区表 SQL& ...
- dotnetcore 与 hbase 之三——c# for hbase 客户端的使用
说明 在上一篇文章dotnetcore 与 hbase 之二--thrift 客户端的制作中已经可以找到 c# hbase 客户端的使用方法了,为什么这里单独列出一篇文章来讲述呢?最简单的理由就是,本 ...
- springMVC关于异常优先级的处理
优先级 既然在SpringMVC中有两种处理异常的方式,那么就存在一个优先级的问题: 当发生异常的时候,SpringMVC会如下处理: (1)SpringMVC会先从配置文件找异常解析器Handler ...
- ES与关系型数据库的通俗比较
1.在Elasticsearch中,文档归属于一种类型(type),而这些类型存在于索引(index)中,我们可以画一些简单的对比图来类比传统关系型数据库: Relational DB -> D ...
- C#避免WinForm窗体假死
WinForm窗体在使用过程中如果因为程序等待时间太久而导致窗体本身假死无法控制,会严重影响用户的体验,这种情况大多是UI线程被耗时长的代码操作占用所致,可以新开一个线程用来完成耗时长的操作,然后再将 ...
- 利用python爬取王者荣耀英雄皮肤图片
前两天看到同学用python爬下来LOL的皮肤图片,感觉挺有趣的,我也想试试,于是决定来爬一爬王者荣耀的英雄和皮肤图片. 首先,我们找到王者的官网http://pvp.qq.com/web201605 ...
- 【转载】Asp.Net中应用程序的事件响应次序
Asp.Net应用程序事件响应次序是指Application事件的相应次序,涉及到的事件包括Application_Start事件.BeginRequest事件.AuthenticateRequest ...
- alt和title的区别
alt是html标签的属性,而title既是html标签,又是html属性. 在图像标签img中,除了常用的宽度width和高度height属性之外,还有两个比较重要并且也会用到的属性,就是alt和t ...