最优贸易 NOIP 2009 提高组 第三题
题目描述
C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个
城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分
为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价
格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息
之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城
市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的
过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方
式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另
一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定
这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路
为单向通行,双向箭头表示这条道路为双向通行。

假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3
号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格
买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。
现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号
以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入输出格式
输入格式:
第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的
数目。
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城
市的商品价格。
接下来 m 行,每行有 3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果 z=1,
表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市
y 之间的双向道路。
输出格式:
输出文件 trade.out 共 1 行,包含 1 个整数,表示最多能赚取的旅费。如果没有进行贸易,
则输出 0。
输入输出样例
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
5
说明
【数据范围】
输入数据保证 1 号城市可以到达 n 号城市。
对于 10%的数据,1≤n≤6。
对于 30%的数据,1≤n≤100。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市
水晶球价格≤100。
NOIP 2009 提高组 第三题
spfa dis数组存储到达当前城市可获得的最大贸易
用vulm数组储存这个城市之前(包括现在)最便宜的价格;
当 当前城市dis小于来时的城市时,更新当前城市dis
//think twice code once
//baoli #include<cstdio>
#include<cstring>
#include<queue>
using namespace std; const int N=;
int n,m;
int vul[N],vulm[N]; struct node{
int next,v;
}edge[];
int head[N];
int num=;
void add_edge(int x,int y)
{
edge[num].v=y;
edge[num].next=head[x];
head[x]=num++;
} queue<int>que;
int dis[N];
bool vis[N];
void spfa()
{
memset(dis,-,sizeof dis);
vis[]=;
dis[]=;
que.push();
while(!que.empty())
{
int k=que.front();
que.pop();
vis[k]=;
for(int i=head[k];i!=-;i=edge[i].next)
{
bool flag=;
if(dis[edge[i].v]<vul[edge[i].v]-vulm[k])
{
dis[edge[i].v]=vul[edge[i].v]-vulm[k];
vulm[edge[i].v]=min(vulm[k],vulm[edge[i].v]);
if(!vis[edge[i].v])
{
que.push(edge[i].v);
flag=;
}
}
if(dis[edge[i].v]<dis[k])
{
dis[edge[i].v]=dis[k];
vulm[edge[i].v]=min(vulm[k],vulm[edge[i].v]);
if(!vis[edge[i].v]&&!flag)
{
que.push(edge[i].v);
}
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
int a;
scanf("%d",&a);
vulm[i]=vul[i]=a;
head[i]=-;
}
int a,b,c;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(c==)
add_edge(a,b);
if(c==)
add_edge(a,b),add_edge(b,a);
} spfa();
if(dis[n]<=)
printf("");
else printf("%d\n",dis[n]);
return ;
}
最优贸易 NOIP 2009 提高组 第三题的更多相关文章
- NOIP 2008提高组第三题题解by rLq
啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...
- NOIP2008提高组(前三题) -SilverN
此处为前三题,第四题将单独发布 火柴棒等式 题目描述 给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A.B.C是用火柴棍拼出的整数(若该数非零,则最高位不能是0).用火柴棍拼数字0 ...
- 最优贸易 [NOIP 2009]
Description C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向 ...
- 洛谷 P1070 道路游戏(noip 2009 普及组 第四题)
题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 nn个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将这 nn个机器人工厂编 ...
- NOIP 2011 提高组初赛错题简析
Preface 好久没做初赛题了,据说今年的审核会更加严苛,作为一名去年未PY时只有\(92\)分的蒟蒻,我今年看来是\(90\)分都莫得了 然而今年也没怎么看重初赛,结果现在才来做,翻车到了\(84 ...
- 【动态规划】Vijos P1493 传纸条(NOIP2008提高组第三题)
题目链接: https://vijos.org/p/1493 题目大意: 二取方格数,从(1,1)向下或向右走到(n,m)走两次,每个走到的格子值只能被取一次所能取到的最大值. (n,m<=50 ...
- NOIP 2006 提高组 t1 能量项链
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...
- [NOIp 1998 提高组]Probelm 2 连接多位数【2011百度实习生笔试题】
/*====================================================================== [NOIp 1998 提高组]Probelm 2 连接 ...
- NOIP 2014 提高组 题解
NOIP 2014 提高组 题解 No 1. 生活大爆炸版石头剪刀布 http://www.luogu.org/problem/show?pid=1328 这是道大水题,我都在想怎么会有人错了,没算法 ...
随机推荐
- winform Textbox像百度一下实现下拉显示
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- Shell脚本 - nginx启动脚本
OS:CentOS/Redhat 系列 并在 Centos 6.7 和 Centos 7.2 上测试正常 #!/bin/bash # # auth: daxin # time: 2018/07/10 ...
- SUSE 11.3 linux ISO下载地址
http://linux.iingen.unam.mx/pub/Linux/Suse/isos/SLES11/ SLE-11-SP3-SDK-DVD-i586-GM-DVD1.iso 6deaa960 ...
- Linux 入门记录:十一、Linux 用户基础
一.用户.组 1. 用户 当我们使用 Linux 时,需要以一个用户的身份登录,一个进程也需要以一个用户的身份运行.用户限制使用者或进程可以使用或不可以使用哪些资源. 2. 组 组用来方便地管理用户. ...
- python基础===抽象
懒惰即美德 斐波那契数列: >>> fibs = [0,1] >>> for i in range(8): fibs.append(fibs[-2]+fibs[-1 ...
- (十五)linux下gdb调试
一.gdb常用命令: 命令 描述 backtrace(或bt) 查看各级函数调用及参数 finish 连续运行到当前函数返回为止,然后停下来等待命令 frame(或f) 帧编号 选择栈帧 info(或 ...
- Keepalived高可用配置
Keepalived简介 Keepalived基于VRRP协议在服务器之间建立了主备关系,通常称之为高可用对.VRRP中文叫虚拟路由冗余协议,目的是解决静态路由的单点故障问题.高可用对之间通过IP多播 ...
- ajax之深入解析(1)
AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML).AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. AJ ...
- Android UI 设计:pixel dip dpi sp density
1. px (pixels)像素 – 是像素,就是屏幕上实际的像素点单位. dip或dp (device independent pixels)设备独立像素,与设备屏幕有关. sp (scaled p ...
- vsftpd 虚拟用户配置
vsftpd 虚拟用户的作用是 通过不同的虚拟用户可以有不同的根目录. 从 2.3.5 版本之后,vsftpd增强了安全检查,如果用户被限定在了其主目录下,则该用户的主目录不能在具有写权限了,如果检查 ...